Sadasivan P K, Dutt D N
Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore.
Int J Biomed Comput. 1994 Jul;36(3):199-207. doi: 10.1016/0020-7101(94)90055-8.
In this paper, we propose an adaptive noise cancellation scheme in a novel way for the minimization of electrooculogram (EOG) artefacts from corrupted EEG signals. This method is based on the fact that the transfer function of the biological neuron can be modeled as a sigmoid non-linearity. Comparison of the time plots and the smoothed linear prediction spectra show that the proposed method effectively minimizes the EOG artefacts from corrupted EEG signals. We have also studied the performance of the above scheme for different values of filter order (P) and the convergence factor (mu). Normalised Mean Squared Error (NMSE) has been used as the measure for comparison. The study shows that the NMSE decreases with increase in P and mu (but saturates after certain values of the parameters), thereby implying a better EOG minimization from EEG signals. It is also observed that the EOG minimization scheme with two EOG reference inputs works better than that with one reference input.
在本文中,我们以一种新颖的方式提出了一种自适应噪声消除方案,用于最小化来自受损脑电图(EEG)信号中的眼电图(EOG)伪迹。该方法基于生物神经元的传递函数可建模为Sigmoid非线性这一事实。时间图和平滑线性预测谱的比较表明,所提出的方法有效地最小化了来自受损EEG信号中的EOG伪迹。我们还研究了上述方案在不同滤波器阶数(P)和收敛因子(μ)值下的性能。归一化均方误差(NMSE)已被用作比较的度量。研究表明,NMSE随着P和μ的增加而减小(但在参数的某些值之后会饱和),从而意味着从EEG信号中能更好地最小化EOG。还观察到具有两个EOG参考输入的EOG最小化方案比具有一个参考输入的方案效果更好。