Suppr超能文献

使用斜投影校正特征向量分解实现眼电图伪迹最小化。

EOG artifact minimization using oblique projection corrected eigenvector decomposition.

作者信息

Zhou Ziling, Puthusserypady Sadasivan

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4656-9. doi: 10.1109/IEMBS.2008.4650251.

Abstract

In this paper, the authors propose an efficient algorithm to minimize the electrooculogram (EOG) artifacts in electroencephalogram (EEG). The approach uses the eigenvectors obtained from a learning process to initialize an oblique projection based blind source extraction (BSE) algorithm. It is used to extract the point source EOG artifacts. EEG data is subsequently reconstructed by a deflation method. The simulations with synthetic data illustrate that the BSE corrected algorithm is reliable and has better performance than the uncorrected eigenvector decomposition based method. The results of simulations with real EEG data confirms the effectiveness of our algorithm.

摘要

在本文中,作者提出了一种高效算法,以最小化脑电图(EEG)中的眼电图(EOG)伪迹。该方法使用从学习过程中获得的特征向量来初始化基于斜投影的盲源提取(BSE)算法。它用于提取点源EOG伪迹。随后通过消去法重建EEG数据。对合成数据的模拟表明,经BSE校正的算法是可靠的,并且比基于未校正特征向量分解的方法具有更好的性能。对真实EEG数据的模拟结果证实了我们算法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验