Suppr超能文献

使用斜投影校正特征向量分解实现眼电图伪迹最小化。

EOG artifact minimization using oblique projection corrected eigenvector decomposition.

作者信息

Zhou Ziling, Puthusserypady Sadasivan

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4656-9. doi: 10.1109/IEMBS.2008.4650251.

Abstract

In this paper, the authors propose an efficient algorithm to minimize the electrooculogram (EOG) artifacts in electroencephalogram (EEG). The approach uses the eigenvectors obtained from a learning process to initialize an oblique projection based blind source extraction (BSE) algorithm. It is used to extract the point source EOG artifacts. EEG data is subsequently reconstructed by a deflation method. The simulations with synthetic data illustrate that the BSE corrected algorithm is reliable and has better performance than the uncorrected eigenvector decomposition based method. The results of simulations with real EEG data confirms the effectiveness of our algorithm.

摘要

在本文中,作者提出了一种高效算法,以最小化脑电图(EEG)中的眼电图(EOG)伪迹。该方法使用从学习过程中获得的特征向量来初始化基于斜投影的盲源提取(BSE)算法。它用于提取点源EOG伪迹。随后通过消去法重建EEG数据。对合成数据的模拟表明,经BSE校正的算法是可靠的,并且比基于未校正特征向量分解的方法具有更好的性能。对真实EEG数据的模拟结果证实了我们算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验