Suppr超能文献

Different effects of respiratory and metabolic acidosis on preganglionic sympathetic nerve activity.

作者信息

Offner B, Czachurski J, König S A, Seller H

机构信息

I. Physiologisches Institut, Universität Heidelberg, Germany.

出版信息

J Appl Physiol (1985). 1994 Jul;77(1):173-8. doi: 10.1152/jappl.1994.77.1.173.

Abstract

We studied sympathetic nerve activity (SNA) responses, recorded in multifiber preparations of left third thoracic white ramus, to respiratory or isocapnic metabolic acidosis or to CO2 enhancement at constant pH in chloralose-anesthetized paralyzed artificially ventilated cats. Cardiopulmonary, baro-, and peripheral chemoreceptors were denervated by bilaterally cutting vagus and carotid sinus nerves. Acidosis was induced by either decreasing artificial ventilation or infusing HCl (0.5 M i.v.). Both respiratory and isocapnic metabolic acidosis induced a decrease in local extracellular pH, measured directly with pH-sensitive microelectrodes within medulla region containing sympathoexcitatory bulbospinal neurons. The magnitude of changes in medullary pH was independent of the way systemic acidosis was generated. Despite uniformity of changes in local medullary extracellular pH due to systemic respiratory or isocapnic metabolic acidosis, different responses were observed in preganglionic SNA. Isocapnic metabolic acidosis resulted in a slight increase in SNA, averaging 6.4% per 0.05 systemic pH unit decrease. In contrast, respiratory acidosis induced by decreasing artificial ventilation produced a more pronounced increase of SNA, reaching peak changes of approximately 70% compared with control level with normal blood gases, an average increase of 13% per 0.05 systemic pH unit decrease. We conclude that systemic CO2 and H+ concentrations represent different stimuli to sympathetic nervous system. Despite similar changes of local extracellular pH within rostral ventrolateral medulla during systemic acidosis, different responses of SNA suggest other sites or as yet unknown additional effects of CO2 as being responsible for excitation of sympathetic activity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验