Cogan J D, Phillips J A, Schenkman S S, Milner R D, Sakati N
Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37273-2578.
J Clin Endocrinol Metab. 1994 Nov;79(5):1261-5. doi: 10.1210/jcem.79.5.7962317.
Two families with familial isolated GH deficiency (IGHD) were studied, type II (autosomal dominant) and type I (autosomal recessive), whose GH1 genes exhibit cosegregation with IGHD. DNA sequencing of the GH1 genes of the first family (IGHD II) demonstrated heterozygosity for a T-->C transition in the sixth base of the donor splice site of intron III. The GH1 gene mutation in the second family (IGHD I) was found, in a previous study, to be a G-->C transversion altering the first base of the donor splice site of intron IV. Interestingly, analysis of the transcripts derived from the mutant IGHD II allele revealed that the sequences corresponding to exon III were absent due to an exon skip that causes the loss of amino acids 32-71 from the mature GH protein. In contrast, the IGHD I mutation activates a cryptic donor splice site 73 bases upstream of the normal exon IV donor splice site causing loss of amino acids 103-126 of exon IV followed by a reading frameshift and synthesis of 94 novel amino acids before chain termination 88 nucleotides downstream of the normal GH stop codon. It is hypothesized that, because of the loss of protein sequences derived from exons IV and V, the IGHD I mutation products are not transported to secretory granules and thus cannot perturb secretion of the normal monomeric GH protein. In contrast the T-->C IGHD II mutant allele product retains these sequences and is transported to secretory granules where it can interact with the normal allele product producing a dominant-negative effect at the protein level.
对两个家族性孤立性生长激素缺乏症(IGHD)家族进行了研究,分别为II型(常染色体显性)和I型(常染色体隐性),其生长激素1(GH1)基因与IGHD共分离。对第一个家族(IGHD II)的GH1基因进行DNA测序,结果显示在内含子III供体剪接位点的第六个碱基处存在T→C转换的杂合性。在先前的一项研究中发现,第二个家族(IGHD I)的GH1基因突变是一种G→C颠换,改变了内含子IV供体剪接位点的第一个碱基。有趣的是,对源自突变的IGHD II等位基因的转录本进行分析发现,由于外显子跳跃导致对应于外显子III的序列缺失,从而使成熟生长激素蛋白中32 - 71位氨基酸缺失。相比之下,IGHD I突变激活了正常外显子IV供体剪接位点上游73个碱基处的一个隐蔽供体剪接位点,导致外显子IV的103 - 126位氨基酸缺失,随后发生读框移位,并在正常生长激素终止密码子下游88个核苷酸处链终止前合成94个新氨基酸。据推测,由于缺失了源自外显子IV和V的蛋白质序列,IGHD I突变产物无法转运至分泌颗粒,因此不会干扰正常单体生长激素蛋白的分泌。相比之下,T→C的IGHD II突变等位基因产物保留了这些序列,并被转运至分泌颗粒,在那里它可以与正常等位基因产物相互作用,在蛋白质水平产生显性负效应。