Suppr超能文献

Point mutations in IIS4 alter activation and inactivation of rat brain IIA Na channels in Xenopus oocyte macropatches.

作者信息

Fleig A, Fitch J M, Goldin A L, Rayner M D, Starkus J G, Ruben P C

机构信息

Department of Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu 96822.

出版信息

Pflugers Arch. 1994 Jul;427(5-6):406-13. doi: 10.1007/BF00374254.

Abstract

Macroscopic currents of wild-type rat brain IIA (RBIIA) and mutant Na channels were recorded in excised patches from Xenopus oocytes. A charge deletion (K859Q) and an adjacent conservative mutation (L860F) in the second domain S4 membrane-spanning region differentially altered voltage sensitivity and kinetics. Analysis of voltage dependence was confined to Na currents with fast inactivation kinetics, although RBIIA and K859Q (but not L860F) also showed proportional shifts between at least two gating modes, rendering currents with fast or slow inactivation kinetics, respectively. Compared to RBIIA, the midpoint of the activation curve was shifted in both K859Q and L860F by 22 mV to more positive potentials, yet this shift was not associated with a corresponding change in the voltage dependence of time constants for activation (tau a) or inactivation (tau h1, tau h2). L860F showed faster activation time constants tau a than RBIIA, while K859Q was slower for both the activation (tau a) and the inactivation components (tau h1). Similarly, the steady-state inactivation curve of L860F but not K859Q shifted by 9 mV in the hyperpolarizing direction. Thus, the fourth charge in the IIS4 transmembrane segment exerts control over voltage sensitivity and kinetics of activation and may interact with structure that influence other aspects of channel gating.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验