Suppr超能文献

Recursive deconvolution of combinatorial chemical libraries.

作者信息

Erb E, Janda K D, Brenner S

机构信息

Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.

出版信息

Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11422-6. doi: 10.1073/pnas.91.24.11422.

Abstract

A recursive strategy that solves for the active members of a chemical library is presented. A pentapeptide library with an alphabet of Gly, Leu, Phe, and Tyr (1024 members) was constructed on a solid support by the method of split synthesis. One member of this library (NH2-Tyr-Gly-Gly-Phe-Leu) is a native binder to a beta-endorphin antibody. A variation of the split synthesis approach is used to build the combinatorial library. In four vials, a member of the library's alphabet is coupled to a solid support. After each coupling, a portion of the resin from each of the four reaction vials was set aside and catalogued. The solid support from each vial is then combined, mixed, and redivided. The steps of (i) coupling, (ii) saving and cataloging, and (iii) randomizing were repeated until a pentapeptide library was obtained. The four pentapeptide libraries where the N-terminal amino acid is defined were screened against the beta-endorphin antibody and quantitated via an ELISA. The amino acid of the four pools that demonstrated the most binding was then coupled to the four tetrapeptide partial libraries that had been set aside and catalogued during the split synthesis. This recursive deconvolution was repeated until the best binders were deduced. Besides the anticipated native binder, two other members of the library displayed significant binding. This recursive method of deconvolution does not use a molecular tag, requires only one split synthesis, and can be applied to the deconvolution of nonlinear small-molecule combinatorial libraries and linear oligomeric combinatorial libraries, since it is based only on the procedure of the synthesis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b341/45243/2443ce37c740/pnas01146-0153-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验