Suppr超能文献

聚唾液酸工程:利用神经侵袭性大肠杆菌K1的聚唾液酸转移酶合成聚唾液酸化新糖鞘脂

Polysialic acid engineering: synthesis of polysialylated neoglycosphingolipids by using the polysialyltransferase from neuroinvasive Escherichia coli K1.

作者信息

Cho J W, Troy F A

机构信息

Department of Biological Chemistry, University of California School of Medicine, Davis 95616.

出版信息

Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11427-31. doi: 10.1073/pnas.91.24.11427.

Abstract

The CMP-sialic acid:poly alpha 2,8sialosyl sialyltransferase (polyST) in neurotropic Escherichia coli K1 inner membranes catalyzes synthesis of the alpha 2,8-linked polysialic acid capsule. The capsule is a neurovirulent determinant associated with neonatal meningitis in humans. A functionally similar polyST in human neuroblastomas polysialylates neural cell adhesion molecules. While bacteria do not synthesize glycosphingolipids (GSLs), we report here that the E. coli K1 polyST can selectively polysialylate several structurally related GSLs, when added as exogenous sialyl acceptors. A structural feature common to the preferred sialyl acceptors (GD3 > GT1a > GQ1b = GT1b > GD2 = GD1b = GD1a > GM1) was the disialyl glycotope, Sia alpha 2,8Sia, alpha 2,3-linked to galactose (Sia is sialic acid). A linear tetrasaccharide with a terminal Sia residue (e.g., GD3) was the minimum length oligosaccharide recognized by the polyST. Endo-N-acylneuraminidase was used to confirm the alpha 2,8-specific polysialylation of GSL. Ceramide glycanase was used to release the polysialyllactose chains from the ceramide moiety. Size analysis of these chains showed that 60-80 Sia residues were transferred to the disialyllactose moiety of GD3. The significance of these findings is two-fold. (i) The E. coli K1 polyST can be used as a synthetic reagent to enzymatically engineer the glycosyl moiety of GSL, thus creating oligo- or polysialylated GSLs. Such "designer" GSLs may have potentially important biological and pharmacological properties. (ii) The use of GSLs as exogenous sialyl acceptors increases the sensitivity of detecting polyST activity. The practical advantage of this finding is that polyST activity can be identified and studied in those eukaryotic cells that express low levels of this developmentally regulated enzyme and/or its acceptor.

摘要

嗜神经大肠杆菌K1内膜中的CMP - 唾液酸:聚α2,8 - 唾液酸基唾液酸转移酶(聚唾液酸转移酶,polyST)催化α2,8连接的聚唾液酸荚膜的合成。该荚膜是与人类新生儿脑膜炎相关的神经毒性决定因素。人类神经母细胞瘤中功能相似的聚唾液酸转移酶可对神经细胞黏附分子进行多唾液酸化修饰。虽然细菌不合成糖鞘脂(GSLs),但我们在此报告,当添加外源性唾液酸受体时,大肠杆菌K1聚唾液酸转移酶可选择性地对几种结构相关的GSLs进行多唾液酸化修饰。优选的唾液酸受体(GD3 > GT1a > GQ1b = GT1b > GD2 = GD1b = GD1a > GM1)共有的一个结构特征是二唾液酸糖基,即与半乳糖α2,3连接的Siaα2,8Sia(Sia为唾液酸)。带有末端Sia残基的线性四糖(如GD3)是聚唾液酸转移酶识别的最短寡糖长度。内切N - 酰基神经氨酸酶用于确认GSL的α2,8特异性多唾液酸化修饰。神经酰胺聚糖酶用于从神经酰胺部分释放多唾液酸化乳糖链。这些链的大小分析表明,60 - 80个Sia残基被转移到GD3的二唾液酸化乳糖部分。这些发现的意义有两方面。(i)大肠杆菌K1聚唾液酸转移酶可用作合成试剂,通过酶法改造GSL的糖基部分,从而产生寡聚或多聚唾液酸化的GSLs。这种“设计型”GSLs可能具有潜在重要的生物学和药理学特性。(ii)使用GSLs作为外源性唾液酸受体可提高检测聚唾液酸转移酶活性的灵敏度。这一发现的实际优势在于,在那些表达这种受发育调控的酶及其受体水平较低的真核细胞中,可以识别和研究聚唾液酸转移酶活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11ca/45244/c7027e962ae1/pnas01146-0157-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验