Suppr超能文献

[医学与生物学中的数学建模。理论基础与基本原理]

[Mathematical modelling in medicine and biology. Theoretical basis and fundamentals].

作者信息

Campollo Rivas O

机构信息

Unidad de Investigación Experimental, Instituto Nacional de la Nutrición Salvador Zubrirán, México, D.F.

出版信息

Rev Invest Clin. 1994 Jul-Aug;46(4):307-21.

PMID:7973158
Abstract

Mathematical modelling is currently a common tool in the study of physiological and biochemical systems. Its basis and fundaments are not, however, well known by the non-specialist. Its aims are to describe, explain and predict physiological and biochemical phenomena. Mathematical models provide a concise and objective description of complex dynamic processes by defining, through mathematical equations, the relationships between quantitative measurements; they indicate, also, ways to improve experimental designs, and allow the testing of hypotheses about physiological or biochemical phenomena. Mathematical models can be developed from simple non-compartmental representations to large scale multi-compartmental models. The basic steps in the formulation of a model include conceptualization, realization and solution of the model. Each step has to be verified and validated. In the case of compartmental models, mass-balance equations are used to represent each compartment. A brief review of the theory of system's analysis and the general aims of mathematical modelling is presented here. The modelling process is usually started with a definition of the problem and a parameter identification followed by the setting up of a clear conceptual model of the system. The model consists of the description of the principal flows of material (in and out) and of the main components which store, convert or transmit these flows. A selection of the class of mathematical representation follows, i.e. linear or non-linear, in order to formulate the equations relating the input and output flows of material for each individual component of the system.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

数学建模目前是生理和生化系统研究中的常用工具。然而,其基础和基本原理对于非专业人士来说并不广为人知。其目的是描述、解释和预测生理和生化现象。数学模型通过数学方程定义定量测量之间的关系,从而对复杂的动态过程提供简洁而客观的描述;它们还指出改进实验设计的方法,并允许对生理或生化现象的假设进行检验。数学模型可以从简单的非房室表示发展到大规模的多房室模型。模型构建的基本步骤包括模型的概念化、实现和求解。每个步骤都必须经过验证和确认。对于房室模型,质量平衡方程用于表示每个房室。本文简要回顾了系统分析理论和数学建模的一般目标。建模过程通常从问题定义和参数识别开始,随后建立系统的清晰概念模型。该模型包括对物质主要流动(流入和流出)以及存储、转换或传输这些流动的主要成分的描述。接下来要选择数学表示的类别,即线性或非线性,以便为系统的每个单独组件制定与物质输入和输出流相关的方程。(摘要截断于250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验