Suppr超能文献

包含干涉效应的理论重组过程。

Theoretical recombination processes incorporating interference effects.

作者信息

Karlin S, Liberman U

机构信息

Department of Mathematics, Stanford University, California 94305.

出版信息

Theor Popul Biol. 1994 Oct;46(2):198-231. doi: 10.1006/tpbi.1994.1025.

Abstract

With the acquisition of genetic, physical, and sequence maps, linkage relationships among genes (markers) may be more accurately approached in terms of global models for the distribution of recombination events that take into account interference. There are two principal analytical methods used for ascertaining linkage relationships. The first method, the Haldane-Kosambi differential equation approach, has the limitation that all of its calculations rest on consideration of only three gene markers, where recombination depends only on the physical distance between markers. In this formulation the resulting map function is in general not feasible for use with multiple markers. The second method starts with a model of the crossover process from which recombination values are determined. The best studied global recombination processes are based on sequential (renewal) crossover formation processes, the count-location crossover structure, and crossovers evolving by a cascade mechanism. This paper, containing both review and new results, concentrates on two aspects of recombination structures: (i) classifications and characterizations of multimarker crossover distributions; and (ii) analysis of regular and higher order crossover interference forms. In eucaryotic species, the general impression is that positive interference prevails, while in procaryotic and viral organisms, there may be circumstances of negative interference. We would propose in estimating the crossover formation process a binomial count distribution or any other count distribution satisfying property (a) of Theorem 9.1 and a location distribution fitted by the data. It is also reasonable to try one or more obligate crossover points superimposed on independent Poisson processes determining other crossover points. This latter model also generates a situation of positive interference (Theorem 3.1).

摘要

随着遗传图谱、物理图谱和序列图谱的获得,考虑到干扰因素,基因(标记)之间的连锁关系可以通过重组事件分布的全局模型更准确地确定。确定连锁关系主要有两种分析方法。第一种方法是Haldane-Kosambi微分方程法,其局限性在于所有计算仅基于三个基因标记,其中重组仅取决于标记之间的物理距离。在此公式中,所得的图谱函数通常不适用于多个标记。第二种方法从确定重组值的交叉过程模型开始。研究得最充分的全局重组过程基于顺序(更新)交叉形成过程、计数-定位交叉结构以及通过级联机制演化的交叉。本文既有综述又有新成果,重点关注重组结构的两个方面:(i)多标记交叉分布的分类和特征描述;(ii)规则和高阶交叉干扰形式的分析。在真核生物中,一般印象是正干扰占主导,而在原核生物和病毒生物体中,可能存在负干扰的情况。我们建议在估计交叉形成过程时采用二项计数分布或任何其他满足定理9.1性质(a)的计数分布以及由数据拟合的定位分布。尝试在确定其他交叉点的独立泊松过程上叠加一个或多个强制交叉点也是合理的。后一种模型也会产生正干扰的情况(定理3.1)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验