Suppr超能文献

Heterogeneity in the 5' untranslated region of mouse cytochrome cT mRNAs leads to altered translational status of the mRNAs.

作者信息

Yiu G K, Gu W, Hecht N B

机构信息

Department of Biology, Tufts University, Medford, MA 02155.

出版信息

Nucleic Acids Res. 1994 Nov 11;22(22):4599-606. doi: 10.1093/nar/22.22.4599.

Abstract

Previous studies have shown that the differential regulation of mouse somatic cytochrome c (cyt cS) and testicular cytochrome c (cyt cT) during spermatogenesis is accompanied by changes in mRNA length [Hake et al. (1990) Development, 110, 249-257]. When analyzed by polysomal gradient sedimentation, cytochrome cT sediments in two broad size classes: non-polysomal mRNAs are about 0.6 to 0.75 kb and polysomal mRNAs range from 0.7 to 0.9 kb. Both classes of mRNAs shorten to about 0.5 kb following deadenylation. Oligonucleotide-directed cleavage of the cytochrome cT RNAs by RNase H reveals that the size heterogeneity of cytochrome cT mRNAs resides in the 5' untranslated regions (UTRs). Ribonuclease protection assays reveal that multiple cytochrome cT mRNAs are transcribed from six different transcriptional start sites spanning a region of 59 nucleotides in the 5'UTR from +1 to +59. Transcripts derived from the first and second transcriptional initiation sites are not loaded onto polysomes as efficiently as those transcripts initiated from the other start sites. Each of the longer mRNAs has an upstream open reading frame, which starts at +8 and ends at +136 in the 5'UTR of the cytochrome cT transcript. Computer analysis suggests that the lengthened 5'UTR sequences allow additional hairpin structures to be formed. Since the upstream open reading frame and the additional stem loop structure are absent in the 5' UTRs of the cytochrome cT mRNAs initiated from the four downstream start sites, we suggest that these sequences in the two longest cytochrome cT transcripts hinder their loading onto polysomes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/880b/308506/639d8b4636ca/nar00046-0059-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验