Suppr超能文献

甲基溴在细胞悬浮液和土壤中被甲烷氧化菌降解。

Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils.

作者信息

Oremland R S, Miller L G, Culbertson C W, Connell T L, Jahnke L

机构信息

U.S. Geological Survey, Menlo Park, California 94025.

出版信息

Appl Environ Microbiol. 1994 Oct;60(10):3640-6. doi: 10.1128/aem.60.10.3640-3646.1994.

Abstract

Cell suspensions of Methylococcus capsulatus mineralized methyl bromide (MeBr), as evidence by its removal from the gas phase, the quantitative recovery of Br- in the spent medium, and the production of 14CO2 from [14C]MeBr. Methyl fluoride fluoride (MeF) inhibited oxidation of methane as well as that of [14C]MeBr. The rate of MeBr consumption by cells varied inversely with the supply of methane, which suggested a competitive relationship between these two substrates. However, MeBr did not support growth of the methanotroph. In soils exposed to high levels (10,000 ppm) of MeBr, methane oxidation was completely inhibited. At this concentration, MeBr removal rates were equivalent in killed and live controls, which indicated a chemical rather than biological removal reaction. At lower concentration (1,000 ppm) of MeBr, methanotrophs were active and MeBr consumption rates were 10-fold higher in live controls than in killed controls. Soils exposed to trace levels (10 ppm) of MeBr demonstrated complete consumption within 5 h of incubation, while controls inhibited with MeF or incubated without O2 had 50% lower removal rates. Aerobic soils oxidized [14C]MeBr to 14CO2, and MeF inhibited oxidation by 72%. Field experiments demonstrated slightly lower MeBr removal rates in chambers containing MeF than in chambers lacking MeF. Collectively, these results show that soil methanotrophic bacteria, as well as other microbes, can degrade MeBr present in the environment.

摘要

荚膜甲基球菌的细胞悬浮液可使甲基溴(MeBr)矿化,气相中甲基溴的去除、废培养基中溴离子(Br-)的定量回收以及[14C]MeBr产生14CO2均证明了这一点。甲基氟(MeF)抑制甲烷以及[14C]MeBr的氧化。细胞消耗MeBr的速率与甲烷的供应呈反比,这表明这两种底物之间存在竞争关系。然而,MeBr并不支持甲烷营养菌的生长。在暴露于高浓度(10,000 ppm)MeBr的土壤中,甲烷氧化被完全抑制。在此浓度下,灭活对照和活对照中MeBr的去除率相当,这表明是化学而非生物去除反应。在较低浓度(1,000 ppm)的MeBr下,甲烷营养菌具有活性,活对照中MeBr的消耗率比灭活对照高10倍。暴露于痕量水平(10 ppm)MeBr的土壤在培养5小时内可完全消耗,而用MeF抑制或在无氧条件下培养的对照去除率低50%。需氧土壤将[14C]MeBr氧化为14CO2,MeF可使氧化作用降低72%。田间试验表明,含有MeF的试验箱中MeBr的去除率略低于不含MeF的试验箱。总体而言,这些结果表明土壤中的甲烷营养细菌以及其他微生物能够降解环境中存在的MeBr。

相似文献

1
Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils.
Appl Environ Microbiol. 1994 Oct;60(10):3640-6. doi: 10.1128/aem.60.10.3640-3646.1994.
2
Consumption of tropospheric levels of methyl bromide by C(1) compound-utilizing bacteria and comparison to saturation kinetics.
Appl Environ Microbiol. 2001 Dec;67(12):5437-43. doi: 10.1128/AEM.67.12.5437-5443.2001.
3
Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils.
Appl Environ Microbiol. 1998 Aug;64(8):2899-905. doi: 10.1128/AEM.64.8.2899-2905.1998.
4
Bacterial oxidation of methyl bromide in fumigated agricultural soils.
Appl Environ Microbiol. 1997 Nov;63(11):4346-54. doi: 10.1128/aem.63.11.4346-4354.1997.
6
Oxidation of methyl halides by the facultative methylotroph strain IMB-1.
Appl Environ Microbiol. 1999 Nov;65(11):5035-41. doi: 10.1128/AEM.65.11.5035-5041.1999.
7
Rapid Consumption of Low Concentrations of Methyl Bromide by Soil Bacteria.
Appl Environ Microbiol. 1998 May 1;64(5):1864-70. doi: 10.1128/AEM.64.5.1864-1870.1998.
8
Biodegradation of monohalogenated alkanes by soil NH(3)-oxidizing bacteria.
Appl Microbiol Biotechnol. 2002 Aug;59(4-5):535-9. doi: 10.1007/s00253-002-1031-7. Epub 2002 Jun 1.
9
Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria.
Appl Environ Microbiol. 2007 Aug;73(16):5153-61. doi: 10.1128/AEM.00620-07. Epub 2007 Jun 15.
10
Bioreactors for removing methyl bromide following contained fumigations.
Environ Sci Technol. 2003 Apr 15;37(8):1698-704. doi: 10.1021/es026155j.

引用本文的文献

2
Bacterial oxidation of methyl bromide in fumigated agricultural soils.
Appl Environ Microbiol. 1997 Nov;63(11):4346-54. doi: 10.1128/aem.63.11.4346-4354.1997.
3
Inhibition of Methane Oxidation by Methylococcus capsulatus with Hydrochlorofluorocarbons and Fluorinated Methanes.
Appl Environ Microbiol. 1997 Jul;63(7):2952-6. doi: 10.1128/aem.63.7.2952-2956.1997.
4
Microbial consumption of atmospheric isoprene in a temperate forest soil.
Appl Environ Microbiol. 1998 Jan;64(1):172-7. doi: 10.1128/AEM.64.1.172-177.1998.
6
Consumption of tropospheric levels of methyl bromide by C(1) compound-utilizing bacteria and comparison to saturation kinetics.
Appl Environ Microbiol. 2001 Dec;67(12):5437-43. doi: 10.1128/AEM.67.12.5437-5443.2001.
7
Effects of soil and water content on methyl bromide oxidation by the ammonia-oxidizing bacterium Nitrosomonas europaea.
Appl Environ Microbiol. 2000 Jun;66(6):2636-40. doi: 10.1128/AEM.66.6.2636-2640.2000.
8
Oxidation of methyl halides by the facultative methylotroph strain IMB-1.
Appl Environ Microbiol. 1999 Nov;65(11):5035-41. doi: 10.1128/AEM.65.11.5035-5041.1999.
10
A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane.
Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4615-20. doi: 10.1073/pnas.96.8.4615.

本文引用的文献

1
Emission of methyl bromide from biomass burning.
Science. 1994 Mar 4;263(5151):1255-7. doi: 10.1126/science.263.5151.1255.
2
Selective inhibition of ammonium oxidation and nitrification-linked n(2)o formation by methyl fluoride and dimethyl ether.
Appl Environ Microbiol. 1993 Aug;59(8):2457-64. doi: 10.1128/aem.59.8.2457-2464.1993.
3
Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation.
Appl Environ Microbiol. 1992 Sep;58(9):2983-92. doi: 10.1128/aem.58.9.2983-2992.1992.
4
Biodegradation of Halogenated Hydrocarbon Fumigants by Nitrifying Bacteria.
Appl Environ Microbiol. 1990 Aug;56(8):2568-2571. doi: 10.1128/aem.56.8.2568-2571.1990.
5
Denitrification in san francisco bay intertidal sediments.
Appl Environ Microbiol. 1984 May;47(5):1106-12. doi: 10.1128/aem.47.5.1106-1112.1984.
6
Hydrogen metabolism by decomposing cyanobacterial aggregates in big soda lake, nevada.
Appl Environ Microbiol. 1983 May;45(5):1519-25. doi: 10.1128/aem.45.5.1519-1525.1983.
7
Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures.
Appl Environ Microbiol. 1981 Feb;41(2):396-403. doi: 10.1128/aem.41.2.396-403.1981.
8
Agricultural soil fumigation as a source of atmospheric methyl bromide.
Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8420-3. doi: 10.1073/pnas.90.18.8420.
9
Acetylene as a substrate in the development of primordial bacterial communities.
Orig Life Evol Biosph. 1988;18(4):397-407. doi: 10.1007/BF01808218.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验