Suppr超能文献

配体/受体相互作用的多相建模。相对较小的两亲性物质与受体蛋白的疏水性依赖性结合以及受体位点的性质和朝向。

Multiphasic modelling of ligand/acceptor interactions. The hydrophobicity-dependent binding of relatively small amphiphilic substances to acceptor proteins and the nature and facedness of acceptor sites.

作者信息

Heirwegh K P, Vermeir M, Zaman Z

机构信息

Katholieke Universiteit Leuven, Belgium.

出版信息

J Biochem Biophys Methods. 1994 Jul;29(1):23-47. doi: 10.1016/0165-022x(94)90055-8.

Abstract

The modelling of multiphasic ligand/acceptor equilibrium binding systems proceeds at three logically distinct levels: (1) A suitable response quantity, e.g. the amount of acceptor-bound ligand nEL, is expressed as a function of the ligand concentrations [Li] (L = A,B,...) in the compartment i that contains the acceptor sites. One thus obtains a response function nEL = f1([Li]). In general, the equilibrium constants KL contained in such mathematical models are physically ill-defined. (2) Each local concentration [Li] is further expressed as a function of [Laq], the corresponding concentration in the aqueous phase, leading to nEL = f2([Laq]). In this way, the constants KL are transformed into effective constants K'L which (i) can be assessed experimentally and (ii) depend on ligand hydrophobicity in a way that is characteristic of the binding site. Formulation of the functions f1 and F2 only requires knowledge of the reactions in which the acceptor sites participate directly. (3) For each ligand, the experimentally accessible total ligand concentration Lt is expressed as a function of [Laq], leading to concentration balance equations Lt = Lt([Laq]). The latter transformation takes account of any reactions, distinct from ligand/acceptor interaction, in which the ligands are involved, e.g. binding to additional protein sites. As a result of steps 2 and 3, each binding system is described by a set of simultaneous equations dependent on the auxiliary variable [Laq]: (i) the response function f2([Laq]) and (ii) a concentration balance for each ligand Lt = Lt([Laq]). The formulae are rendered more conscise and their discussion and application to data fitting are simplified by introducing, for each ligand L, a function FL characterising the distribution of unbound monomeric ligand over the various partition compartments. When the acceptor acts on unbound ligand, the formulae are further expressed in terms of a new auxiliary variable i.e. the total concentration of unbound monomeric ligand microL. In contrast to data analysis as a function of local concentrations, analysis in terms of total ligand concentrations avoids losing sight of alternate hypotheses about the nature of the binding sites. The present formulation has also permitted clarification of several consequences of the multiphasic nature of the binding systems that, as yet, have been poorly recognised.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

多相配体/受体平衡结合系统的建模在三个逻辑上不同的层面进行:(1)一个合适的响应量,例如受体结合配体的量nEL,被表示为包含受体位点的隔室i中配体浓度[Li](L = A、B等)的函数。由此得到一个响应函数nEL = f1([Li])。一般来说,这类数学模型中包含的平衡常数KL在物理上定义不明确。(2)每个局部浓度[Li]进一步表示为水相中相应浓度[Laq]的函数,得到nEL = f2([Laq])。通过这种方式,常数KL被转化为有效常数K'L,其中(i)可以通过实验评估,(ii)以一种与结合位点特征相关的方式依赖于配体疏水性。函数f1和f2的推导仅需要了解受体位点直接参与的反应。(3)对于每个配体,实验可获取的总配体浓度Lt表示为[Laq]的函数,得到浓度平衡方程Lt = Lt([Laq])。后一种转化考虑了配体参与的任何与配体/受体相互作用不同的反应,例如与其他蛋白质位点的结合。步骤2和3的结果是,每个结合系统由一组依赖于辅助变量[Laq]的联立方程描述:(i)响应函数f2([Laq])和(ii)每个配体的浓度平衡Lt = Lt([Laq])。通过为每个配体L引入一个表征未结合单体配体在各个分配隔室中分布的函数FL,公式变得更简洁,并且它们在数据拟合中的讨论和应用也得到简化。当受体作用于未结合配体时,公式进一步用一个新的辅助变量表示,即未结合单体配体的总浓度μL。与基于局部浓度的数据分析不同,基于总配体浓度的分析避免了忽视关于结合位点性质的其他假设。目前的公式也使得结合系统多相性质的几个尚未得到充分认识的结果得以阐明。(摘要截取自400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验