Suppr超能文献

Effects of isoflurane and hypothermia on glutamate receptor-mediated calcium influx in brain slices.

作者信息

Bickler P E, Buck L T, Hansen B M

机构信息

Department of Anesthesia, University of California School of Medicine, San Francisco.

出版信息

Anesthesiology. 1994 Dec;81(6):1461-9. doi: 10.1097/00000542-199412000-00022.

Abstract

BACKGROUND

To understand how volatile anesthetics protect neurons during cerebral ischemia, we studied the effects of isoflurane on cerebral glutamate receptor-mediated calcium influx. Calcium influx via these key excitatory receptors may mediate pain transmission, memory, and the pathophysiologic sequelae of cerebral anoxia or ischemia. Because cerebral protection by hypothermia may involve a decrease in glutamate receptor activity, we also examined the interaction of temperature and isoflurane on glutamate receptor inhibition.

METHODS

We measured glutamate receptor-mediated changes in cytosolic calcium in 300-microns-thick rat cortical brain slices. Temperature was varied to 28, 34, 37, or 39 degrees C and isoflurane partial pressure to 0.016-0.019 atm (equivalent to 1.16 minimum alveolar concentration [MAC], adjusted for temperature and age). Brain slices were loaded with fura-2 to permit measurement of cytosolic free calcium. Calcium changes due to the glutamate receptor agonist N-methyl-D-aspartate (NMDA) (50 microM), to ischemia levels of L-glutamate (1.0 mM) or to simulated ischemia (1.0 mM glutamate, 100 microM NaCN, and 3.5 mM iodoacetate) was then measured. Slice lactate dehydrogenase leakage and adenosine triphosphate were measured as indices of cellular integrity.

RESULTS

Isoflurane reduced both L-glutamate and NMDA-mediated calcium fluxes by approximately 60%. Neither the activity of the NMDA receptor nor its inhibition by isoflurane was altered by temperature. The rate of calcium influx during ischemia was significantly reduced both by temperature and by isoflurane (P < 0.05). Adenosine triphosphate loss and lactate dehydrogenase leakage were reduced by isoflurane during simulated ischemia by 37% and 73% (P < 0.05), respectively.

CONCLUSIONS

(1) At 1.16 MAC, isoflurane potently inhibits glutamate receptors and delays cellular injury induced by simulated ischemia, and (2) hypothermia does not reduce the intrinsic activity of cortical glutamate receptors but delays calcium accumulation during simulated ischemia. Isoflurane reduces the severity of key pathophysiologic events in an in vitro model of simulated cerebral ischemia.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验