Suppr超能文献

Uncovering the synchronization dynamics from correlated neuronal activity quantifies assembly formation.

作者信息

Deppisch J, Pawelzik K, Geisel T

机构信息

Institut für Theoretische Physik, Universität Frankfurt, Frankfurt/Main, Germany.

出版信息

Biol Cybern. 1994;71(5):387-99. doi: 10.1007/BF00198916.

Abstract

Synchronous network excitation is believed to play an outstanding role in neuronal information processing. Due to the stochastic nature of the contributing neurons, however, those synchronized states are difficult to detect in electrode recordings. We present a framework and a model for the identification of such network states and of their dynamics in a specific experimental situation. Our approach operationalizes the notion of neuronal groups forming assemblies via synchronization based on experimentally obtained spike trains. The dynamics of such groups is reflected in the sequence of synchronized states, which we describe as a renewal dynamics. We furthermore introduce a rate function which is dependent on the internal network phase that quantifies the activity of neurons contributing to the observed spike train. This constitutes a hidden state model which is formally equivalent to a hidden Markov model, and all its parameters can be accurately determined from the experimental time series using the Baum-Welch algorithm. We apply our method to recordings from the cat visual cortex which exhibit oscillations and synchronizations. The parameters obtained for the hidden state model uncover characteristic properties of the system including synchronization, oscillation, switching, background activity and correlations. In applications involving multielectrode recordings, the extracted models quantify the extent of assembly formation and can be used for a temporally precise localization of system states underlying a specific spike train.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验