Suppr超能文献

放射治疗计划优化中的超快速模拟退火算法

Very fast simulated reannealing in radiation therapy treatment plan optimization.

作者信息

Morrill S M, Lam K S, Lane R G, Langer M, Rosen I I

机构信息

University of Texas Medical Branch, Department of Radiation Therapy, Galveston 77550.

出版信息

Int J Radiat Oncol Biol Phys. 1995 Jan 1;31(1):179-88. doi: 10.1016/0360-3016(94)00350-T.

Abstract

PURPOSE

Very Fast Simulated Reannealing is a relatively new (1989) and sophisticated algorithm for simulated annealing applications. It offers the advantages of annealing methods while requiring shorter execution times. The purpose of this investigation was to adapt Very Fast Simulated Reannealing to conformal treatment planning optimization.

METHODS AND MATERIALS

We used Very Fast Simulated Reannealing to optimize treatments for three clinical cases with two different cost functions. The first cost function was linear (minimum target dose) with nonlinear dose-volume normal tissue constraints. The second cost function (probability of uncomplicated local control) was a weighted product of normal tissue complication probabilities and the tumor control probability.

RESULTS

For the cost functions used in this study, the Very Fast Simulated Reannealing algorithm achieved results within 5-10% of the final solution (100,000 iterations) after 1000 iterations and within 3-5% of the final solution after 5000-10000 iterations. These solutions were superior to those produced by a conventional treatment plan based on an analysis of the resulting dose-volume histograms. However, this technique is a stochastic method and results vary in a statistical manner. Successive solutions may differ by up to 10%.

CONCLUSION

Very Fast Simulated Reannealing, with modifications, is suitable for radiation therapy treatment planning optimization. It produced results within 3-10% of the optimal solution, produced using another optimization algorithm (Mixed Integer Programming), in clinically useful execution times.

摘要

目的

超快速模拟退火算法是一种相对较新的(1989年)且复杂的模拟退火应用算法。它兼具退火方法的优点,同时所需执行时间更短。本研究的目的是使超快速模拟退火算法适用于适形治疗计划优化。

方法与材料

我们使用超快速模拟退火算法,针对三个临床病例,采用两种不同的代价函数来优化治疗方案。第一个代价函数是线性的(最小靶剂量),伴有非线性的剂量 - 体积正常组织约束。第二个代价函数(无并发症局部控制概率)是正常组织并发症概率与肿瘤控制概率的加权乘积。

结果

对于本研究中使用的代价函数,超快速模拟退火算法在1000次迭代后,得到的结果与最终解(100,000次迭代)相差5 - 10%,在5000 - 10000次迭代后,与最终解相差3 - 5%。基于对所得剂量 - 体积直方图的分析,这些解优于传统治疗计划所产生的解。然而,该技术是一种随机方法,结果会以统计方式变化。连续的解可能相差高达10%。

结论

经过改进的超快速模拟退火算法适用于放射治疗计划优化。在临床可用的执行时间内,它产生的结果与使用另一种优化算法(混合整数规划)得到的最优解相差3 - 10%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验