Suppr超能文献

Dynamics of extracellular calcium activity following contusion of the rat spinal cord.

作者信息

Moriya T, Hassan A Z, Young W, Chesler M

机构信息

Department of Neurosurgery, New York University Medical Center, New York.

出版信息

J Neurotrauma. 1994 Jun;11(3):255-63. doi: 10.1089/neu.1994.11.255.

Abstract

The role of Ca2+ in cellular injury has received particular attention in studies of acute spinal cord trauma. In this context, the spatial and temporal distribution of extracellular Ca2+ ([Ca2+]e) may have an important bearing on the development of secondary tissue injury. We therefore studied the spatial-temporal distribution of [Ca2+]e following moderate (25 g-cm) contusive injury to the rat thoracic (T9-T11) spinal cord. Double-barreled, Ca(2+)-selective microelectrodes were used to measure the magnitude and time course of [Ca2+]e at increasing depths from the dorsal spinal cord surface. After 2 h, the tissue was frozen and later analyzed for total Ca concentration using atomic absorption spectroscopy. [Ca2+]e fell at all depths, but the decrease was maximal at 250 and 500 microns from the dorsal surface, where, at 0-10 min after injury, [Ca2+]e averaged 0.09 +/- 0.03 and 0.06 +/- 0.03 mM respectively. By 2 h postinjury, [Ca2+]e recovered to nearly 1 mM across all depths. Over this time, total tissue calcium concentration ([Ca]t) was 4.54 +/- 0.16 mumol/g in injured cords vs 2.75 +/- 0.1 mumol/g in sham-operated controls. These data place emphasis on the dorsal gray matter as a principal site of ionic derangement in acute spinal cord injury. The implications of these findings are discussed with reference to secondary injury processes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验