Suppr超能文献

遵循米氏机制的酶反应的最后阶段,其中游离酶和/或酶-底物复合物不稳定。

Final phase of enzyme reactions following a Michaelis-Menten mechanisms in which the free enzyme and/or the enzyme-substrate complex are unstable.

作者信息

Varón R, Garrido del Solo C, García-Moreno M, Sánchez-Gracia A, García-Cánovas F

机构信息

Departamento de Química-Física, Escuela Universitaria Politécnica, Universidad de Castilla-La Mancha, Albacete, Spain.

出版信息

Biol Chem Hoppe Seyler. 1994 Jan;375(1):35-42. doi: 10.1515/bchm3.1994.375.1.35.

Abstract

An important kinetic analysis of unstable enzyme systems was carried out by Duggleby (Duggleby, R.G. (1986) J. Theor. Biol. 123, 67-80). This author states that his results are of general validity in the sense that the instability rate constants may have any value. Later, Wang & Tsou (Wang and Tsou (1990) J. Theor. Biol. 142, 531-549) rediscovered Duggleby's results when they analyzed a scheme in which the inactivations were due to a non-complexing irreversible inhibitor, pointing out the need to assume an initial steady-state in the catalytic route of the reaction. In the present contribution we show that there are values of the instability rate constants for which the equations of Duggleby are not applicable. We propose, for these cases, an alternative equation, which relates the final substrate concentration with the initial ones of both the substrate and the enzyme. Based on this, an experimental design for the evaluation of kinetic parameters is suggested. The present work concerns enzyme reactions evolving according to a Michaelis-Menten mechanism, in which the free enzyme and/or the enzyme-substrate complex are unstable.

摘要

达格利比(Duggleby, R.G. (1986) J. Theor. Biol. 123, 67至80)对不稳定酶系统进行了一项重要的动力学分析。该作者指出,他的结果具有普遍有效性,即不稳定速率常数可以取任何值。后来,王和邹(Wang and Tsou (1990) J. Theor. Biol. 142, 531至549)在分析一种失活是由非络合不可逆抑制剂引起的反应体系时重新发现了达格利比的结果,指出需要在反应的催化途径中假设一个初始稳态。在本论文中,我们表明存在一些不稳定速率常数的值,对于这些值,达格利比的方程并不适用。对于这些情况,我们提出了一个替代方程,该方程将最终底物浓度与底物和酶的初始浓度联系起来。基于此,建议了一种评估动力学参数的实验设计。本研究涉及根据米氏机制进行的酶反应,其中游离酶和/或酶-底物复合物是不稳定的。

相似文献

7
Michaelis-Menten equation for degradation of insoluble substrate.米氏方程降解不溶性底物。
Math Biosci. 2018 Feb;296:93-97. doi: 10.1016/j.mbs.2017.11.011. Epub 2018 Jan 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验