Herbstein F H, Samson S
Department of Chemistry, Technion-Israel Institute of Technology, Haifa.
Acta Crystallogr B. 1994 Apr 1;50 ( Pt 2):182-91. doi: 10.1107/s010876819301167x.
The crystal structure of pyrene ... pyromellitic dianhydride [(C16H10:C10H2O6); PYRPMA] has been studied over the range 300-19 K, using the low-temperature accessory designed by Samson, Goldish & Dick [J. Appl. Cryst. (1980), 13, 425-432] for a four-circle diffractometer. Earlier results for the disordered and ordered structures [Herbstein & Snyman (1969). Philos. Trans. R. Soc. London Ser. A, 264, 635-666] are confirmed and extended. At 295 K, a = 13.94 (1), b = 9.34 (1), c = 7.31 (1) A, beta = 93.65 (9) degrees, space group P2(1)/a, Z = 2, with pyrenes and pyromellitic dianhydrides (PMDAs) at crystallographic centres of symmetry. At 19 K, a = 13.664 (3), b = 9.281 (2), c = 14.420 (3) A, beta = 91.80 (2) degrees, space group P2(1)/n, Z = 4, with two sets of pyrenes at independent centres of symmetry and the four PMDAs at general positions. There are no discontinuities in cell dimensions with temperature (measurements at approximately 10 K intervals, down to 19 K) but db/dT and d beta/dT show discontinuities at approximately 167 K. Superlattice reflections appear below approximately 164 K (= Tc by X-ray diffraction), corresponding to the doubling of c and change of space group; the specific heat shows an anomalous increase over the range 120-155 K, giving a lambda-type peak. These results show that the transition is second order with regard to Ehrenfest's criteria. PYRPMA is a co-elastic crystal and quantitative analysis shows a linear dependence of the squares of spontaneous strain and of normalized superlattice intensity on temperature; hence, in terms of Landau theory, the transition is tricritical. However, the excess specific heat cannot be explained entirely on this basis. The physical nature of the transition is discussed. PYRPMA is so far unique among the pi-molecular compounds showing disorder-to-order transitions in the solid state in that there is a doubling of one of the axes; all indications are, however, that it resembles the other examples in the sense that subtle intermolecular packing interactions (here between pyrenes and PMDAs) are the driving force for the transition rather than electronic or charge-transfer interactions.
芘……均苯四甲酸二酐[(C₁₆H₁₀:C₁₀H₂O₆);PYRPMA]的晶体结构在300 - 19 K范围内进行了研究,使用了由Samson、Goldish和Dick[《应用晶体学杂志》(1980年),13卷,425 - 432页]设计的用于四圆衍射仪的低温附件。先前关于无序和有序结构的结果[Herbstein和Snyman(1969年)。《伦敦皇家学会哲学学报》A辑,264卷,635 - 666页]得到了证实和扩展。在295 K时,a = 13.94(1),b = 9.34(1),c = 7.31(1)埃,β = 93.65(9)度,空间群P2(1)/a,Z = 2,芘和均苯四甲酸二酐(PMDAs)位于晶体学对称中心。在19 K时,a = 13.664(3),b = 9.281(2),c = 14.420(3)埃,β = 91.80(2)度,空间群P2(1)/n,Z = 4,两组芘位于独立的对称中心,四个PMDAs位于一般位置。晶胞尺寸随温度没有不连续变化(在降至19 K的过程中以大约10 K的间隔进行测量),但db/dT和dβ/dT在大约167 K处显示出不连续变化。超晶格反射在大约164 K以下出现(通过X射线衍射确定为Tc),对应于c轴加倍和空间群变化;比热在120 - 155 K范围内出现异常增加,形成一个λ型峰。这些结果表明,根据埃伦费斯特准则,该转变是二级的。PYRPMA是一种共弹性晶体,定量分析表明自发应变的平方和归一化超晶格强度与温度呈线性依赖关系;因此,根据朗道理论,该转变是三临界点的。然而,过量比热不能完全基于此得到解释。讨论了该转变的物理本质。PYRPMA在显示固态无序到有序转变的π分子化合物中是迄今为止独一无二的,因为其中一个轴加倍了;然而,所有迹象表明,从微妙的分子间堆积相互作用(这里是芘和PMDAs之间的相互作用)是转变的驱动力而非电子或电荷转移相互作用这一意义上来说,它与其他例子相似。