Suppr超能文献

产物结合调节了埃氏巨球形菌短链酰基辅酶A脱氢酶活性位点突变体的热力学性质。

Product binding modulates the thermodynamic properties of a Megasphaera elsdenii short-chain acyl-CoA dehydrogenase active-site mutant.

作者信息

Becker D F, Fuchs J A, Stankovich M T

机构信息

Chemistry and Biochemistry Department, University of Minnesota, Minneapolis 55455.

出版信息

Biochemistry. 1994 Jun 14;33(23):7082-7. doi: 10.1021/bi00189a010.

Abstract

Previous work has shown that the redox properties of Megasphaera elsdenii short-chain acyl-CoA dehydrogenase (SCAD) are specifically modulated upon the binding of the substrate/product couple, allowing the reaction to proceed thermodynamically [Stankovich, M.T., & Soltysik, S. (1987) Biochemistry 26, 2627-2632]. The focus of this study on the Glu367Gln SCAD mutant protein is to gain an understanding of this phenomenon. The active-site mutant Glu367Gln SCAD inactivates the reductive and oxidative pathways and allows the effects of substrate (butyryl-CoA) and product (crotonyl-CoA) binding on the redox properties of the Glu367Gln SCAD mutant protein to be determined separately. Red anionic semiquinone was found to be thermodynamically stabilized in coulometric/potentiometric reductions of both butyryl-CoA- and crotonyl-CoA-complexed Glu367Gln SCAD. Reduction potential measurements showed that butyryl-CoA binding has little effect on the reduction potential of Glu367Gln SCAD. Crotonyl-CoA complexation, however, shifted the reduction potential of the Glu367Gln SCAD mutant protein by 30 mV in the positive direction. This modulation is similar to the 60-mV positive shift observed in native M. elsdenii SCAD upon complexation with the substrate/product couple [Stankovich, M.T., & Soltysik, S. (1987) Biochemistry 26, 2627-2632]. Thus, product binding and not substrate binding, thermodynamically regulates M. elsdenii SCAD. We propose that this observation is best explained by assuming that the product resembles an intermediate in the catalytic mechanism that is responsible for facilitating isopotential electron transfer from the substrate to the enzyme.

摘要

先前的研究表明,埃氏巨球形菌短链酰基辅酶A脱氢酶(SCAD)的氧化还原特性会在底物/产物偶联物结合时发生特异性调节,从而使反应能够在热力学上进行[斯坦科维奇,M.T.,& 索尔蒂西克,S.(1987年)《生物化学》26卷,2627 - 2632页]。本研究聚焦于谷氨酸367谷氨酰胺(Glu367Gln)SCAD突变蛋白,旨在深入了解这一现象。活性位点突变体谷氨酸367谷氨酰胺(Glu367Gln)SCAD使还原和氧化途径失活,并能分别确定底物(丁酰辅酶A)和产物(巴豆酰辅酶A)结合对谷氨酸367谷氨酰胺(Glu367Gln)SCAD突变蛋白氧化还原特性的影响。研究发现,在丁酰辅酶A和巴豆酰辅酶A复合的谷氨酸367谷氨酰胺(Glu367Gln)SCAD的库仑/电位还原过程中,红色阴离子半醌在热力学上得到了稳定。还原电位测量结果显示,丁酰辅酶A结合对谷氨酸367谷氨酰胺(Glu367Gln)SCAD的还原电位影响不大。然而,巴豆酰辅酶A的复合作用使谷氨酸367谷氨酰胺(Glu367Gln)SCAD突变蛋白的还原电位正向移动了30毫伏。这种调节类似于在天然埃氏巨球形菌SCAD与底物/产物偶联物复合时观察到的60毫伏正向移动[斯坦科维奇,M.T.,& 索尔蒂西克,S.(1987年)《生物化学》26卷,2627 - 2632页]。因此,在热力学上调节埃氏巨球形菌SCAD的是产物结合而非底物结合。我们认为,通过假设产物类似于催化机制中的一种中间体,该中间体负责促进从底物到酶的等电位电子转移,能够最好地解释这一观察结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验