Suppr超能文献

胆固醇对磷脂双层中水的浓度和动力学的影响:使用劳丹探针的荧光研究

Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe.

作者信息

Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E

机构信息

Istituto di Medicina Sperimentale, CNR, 00137 Rome, Italy.

出版信息

Biophys J. 1994 Mar;66(3 Pt 1):763-8. doi: 10.1016/s0006-3495(94)80852-5.

Abstract

The effect of cholesterol on the gel, the liquid-crystalline, and mixed phospholipid phases has been studied using the fluorescence properties of 2-dimethylamino-6-lauroylnaphthalene (Laurdan). Laurdan sensitivity to the polarity and to the dynamics of its environment reveals that cholesterol affects phospholipid bilayers in the gel phase by expelling water and by increasing the amount of dipolar relaxation. In the liquid-crystalline phase, the effect of cholesterol is a reduction of both water concentration and amount of dipolar relaxation. Detailed studies of Laurdan excitation and emission spectral contours as a function of cholesterol concentration show that there are some cholesterol concentrations at which Laurdan spectral properties changes discontinuously. These peculiar cholesterol concentrations are in agreement with recent observations of other workers showing the formation of local order in the liquid-crystalline phase of phospholipids upon addition of phospholipid derivatives of pyrene. A local organization of phospholipids around cholesterol molecule seems to be produced by the presence of peculiar concentrations of cholesterol itself. This local organization is stable enough to be observed during the excited state lifetime of Laurdan of approximately 5-6 ns.

摘要

利用2-二甲基氨基-6-月桂酰萘(Laurdan)的荧光特性,研究了胆固醇对凝胶相、液晶相和混合磷脂相的影响。Laurdan对其环境的极性和动力学的敏感性表明,胆固醇通过排出水分和增加偶极弛豫量来影响凝胶相中的磷脂双层。在液晶相中,胆固醇的作用是降低水浓度和偶极弛豫量。对Laurdan激发和发射光谱轮廓随胆固醇浓度变化的详细研究表明,存在一些胆固醇浓度,在这些浓度下Laurdan光谱特性会发生不连续变化。这些特殊的胆固醇浓度与其他研究人员最近的观察结果一致,即添加芘的磷脂衍生物后,磷脂液晶相中会形成局部有序结构。胆固醇分子周围磷脂的局部组织似乎是由胆固醇本身的特殊浓度产生的。这种局部组织足够稳定,在Laurdan约5-6纳秒的激发态寿命期间可以观察到。

相似文献

2
Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases.
Biophys J. 1998 Apr;74(4):1984-93. doi: 10.1016/S0006-3495(98)77905-6.
3
Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence.
Biophys J. 1998 Jul;75(1):331-41. doi: 10.1016/S0006-3495(98)77517-4.
4
Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations.
Biophys J. 1995 May;68(5):1895-902. doi: 10.1016/S0006-3495(95)80367-X.
7
Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence.
Biophys J. 1994 Jan;66(1):120-32. doi: 10.1016/S0006-3495(94)80763-5.
9
Surface properties of cholesterol-containing membranes detected by Prodan fluorescence.
Biochim Biophys Acta. 2001 Apr 2;1511(2):330-40. doi: 10.1016/s0005-2736(01)00286-3.

引用本文的文献

1
Active regulation of the epidermal growth factor receptor by the membrane bilayer.
bioRxiv. 2025 Aug 18:2025.08.14.670284. doi: 10.1101/2025.08.14.670284.
4
Optimization of the Thawing Protocol for Iberian Boar Sperm.
Animals (Basel). 2022 Sep 28;12(19):2600. doi: 10.3390/ani12192600.
5
Effect of osmotic stress on live cell plasma membranes, probed via Laurdan general polarization measurements.
Biophys J. 2022 Jun 21;121(12):2411-2418. doi: 10.1016/j.bpj.2022.05.016. Epub 2022 May 19.
6
Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics.
Mol Cell Biochem. 2022 Nov;477(11):2507-2528. doi: 10.1007/s11010-022-04459-4. Epub 2022 May 20.
8
Addressing Differentiation in Live Human Keratinocytes by Assessment of Membrane Packing Order.
Front Cell Dev Biol. 2020 Oct 21;8:573230. doi: 10.3389/fcell.2020.573230. eCollection 2020.
9
Impact of Nanoscale Hindrances on the Relationship between Lipid Packing and Diffusion in Model Membranes.
J Phys Chem B. 2020 Feb 27;124(8):1487-1494. doi: 10.1021/acs.jpcb.0c00445. Epub 2020 Feb 18.
10
Temperature-Responsive Hydrophobic Silica Nanoparticle Ultrasound Contrast Agents Directed by Phospholipid Phase Behavior.
ACS Appl Mater Interfaces. 2019 May 1;11(17):15233-15240. doi: 10.1021/acsami.8b22659. Epub 2019 Apr 23.

本文引用的文献

1
Modulation and dynamics of phase properties in phospholipid mixtures detected by Laurdan fluorescence.
Photochem Photobiol. 1993 Mar;57(3):403-10. doi: 10.1111/j.1751-1097.1993.tb02309.x.
2
Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence.
Biophys J. 1994 Jan;66(1):120-32. doi: 10.1016/S0006-3495(94)80763-5.
3
Structure of oriented lipid bilayers.
Nat New Biol. 1971 Mar 17;230(11):69-72. doi: 10.1038/newbio230069a0.
5
Cholesterol and the cell membrane.
Biochim Biophys Acta. 1985 Dec 9;822(3-4):267-87. doi: 10.1016/0304-4157(85)90011-5.
6
Phase equilibria in the phosphatidylcholine-cholesterol system.
Biochim Biophys Acta. 1987 Nov 27;905(1):162-72. doi: 10.1016/0005-2736(87)90020-4.
7
Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes.
Biochemistry. 1988 Jan 12;27(1):399-404. doi: 10.1021/bi00401a060.
8
Time-resolved fluorescence investigation of membrane cholesterol heterogeneity and exchange.
Biochemistry. 1988 Oct 4;27(20):7740-9. doi: 10.1021/bi00420a024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验