Fischer V, Vickers A E, Heitz F, Mahadevan S, Baldeck J P, Minery P, Tynes R
Sandoz Pharma Ltd., Basel, Switzerland.
Drug Metab Dispos. 1994 Mar-Apr;22(2):269-74.
Tropisetron and ondansetron, which are potent and selective 5-hydroxytryptamine (5-HT3) receptor antagonists, were both metabolized by human liver microsomes to several metabolites. These metabolites include the major metabolites found in humans, which are the 5-, 6-, and 7-hydroxy tropisetron and the 7- and 8-hydroxy ondansetron. The cytochrome P-450 (CYP) 2D6 inhibitor quinidine (1 microM) reduced the hydroxylation of tropisetron (67%) and ondansetron (18%). Confirmation of CYP2D6 involvement in the hydroxylation of tropisetron and ondansetron was obtained by the formation of these metabolites in recombinant V79 cells expressing human CYP2D6. The CYP3A substrate/inhibitor, cyclosporine A (CsA) had little effect on tropisetron hydroxylation (< 10%), whereas CsA and triacetyloleandomycin reduced ondansetron 7- and 8-hydroxylation up to 27%. Substrates for CYP1A (phenacetin and acetanilide), CYP2C (mephenytoin), and CYP2E (chlorzoxazone) had negligible inhibitory effects on the hydroxylation of either tropisetron or ondansetron. For the CYP2D6-dependent O-demethylation of dextromethorphan, tropisetron and ondansetron were competitive inhibitors with Ki values of 14 and 29 microM, respectively. The CYP3A specific metabolism of CsA was also competitively inhibited by tropisetron (Ki = 2.1 mM) and ondansetron (Ki = 31 microM). Other metabolites, which are only minor in vivo were also inhibited by CsA, 47-60% for tropisetron metabolism and 43% for ondansetron metabolism. To summarize, this study has identified the involvement of CYP2D6 in the formation of the hydroxylated metabolites of tropisetron and ondansetron and in addition of CYP3A in ondansetron hydroxylation. Because these are the major pathways in vivo, coadministration of drugs competing for CYP2D6 and possibly CYP3A4 could influence the human kinetics of tropisetron and ondansetron.
托烷司琼和昂丹司琼是强效且具有选择性的5-羟色胺(5-HT3)受体拮抗剂,二者均可被人肝微粒体代谢为多种代谢产物。这些代谢产物包括在人体内发现的主要代谢产物,即5-、6-和7-羟基托烷司琼以及7-和8-羟基昂丹司琼。细胞色素P-450(CYP)2D6抑制剂奎尼丁(1微摩尔)可降低托烷司琼(67%)和昂丹司琼(18%)的羟基化作用。通过在表达人CYP2D6的重组V79细胞中形成这些代谢产物,证实了CYP2D6参与托烷司琼和昂丹司琼的羟基化过程。CYP3A底物/抑制剂环孢素A(CsA)对托烷司琼羟基化作用影响甚微(<10%),而CsA和三乙酰竹桃霉素可使昂丹司琼的7-和8-羟基化作用降低达27%。CYP1A(非那西丁和乙酰苯胺)、CYP2C(美芬妥英)和CYP2E(氯唑沙宗)的底物对托烷司琼或昂丹司琼的羟基化作用的抑制作用可忽略不计。对于右美沙芬的CYP2D6依赖性O-去甲基化,托烷司琼和昂丹司琼均为竞争性抑制剂,其Ki值分别为14和29微摩尔。CsA的CYP3A特异性代谢也受到托烷司琼(Ki = 2.1毫摩尔)和昂丹司琼(Ki = 31微摩尔)的竞争性抑制。其他在体内仅为次要成分的代谢产物也受到CsA的抑制,托烷司琼代谢受抑制47 - 60%,昂丹司琼代谢受抑制43%。总之,本研究已确定CYP2D6参与托烷司琼和昂丹司琼羟基化代谢产物的形成,此外CYP3A参与昂丹司琼的羟基化过程。由于这些是体内的主要途径,同时给予竞争CYP2D6以及可能竞争CYP3A4的药物可能会影响托烷司琼和昂丹司琼在人体内的动力学过程。