Osapay K, Case D A
Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.
J Biomol NMR. 1994 Mar;4(2):215-30. doi: 10.1007/BF00175249.
The contribution of peptide groups to H alpha and H beta proton chemical shifts can be modeled with empirical equations that represent magnetic anisotropy and electrostatic interactions [Osapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436-9444]. Using these, a model for the 'random coil' reference state can be generated by averaging a dipeptide over energetically allowed regions of torsion-angle space. Such calculations support the notion that the empirical constant used in earlier studies arises from neighboring peptide contributions in the reference state, and suggest that special values be used for glycine and proline residues, which differ significantly from other residues in their allowed phi, psi-ranges. New constants for these residues are reported that provide significant improvements in predicted backbone shifts. To illustrate how secondary structure affects backbone chemical shifts we report calculations on oligopeptide models for helices, sheets and turns. In addition to suggesting a physical mechanism for the widely recognized average difference between alpha and beta secondary structures, these models suggest several additional regularities that should be expected: (a) H alpha protons at the edges of beta-sheets will have a two-residue periodicity; (b) the H alpha 2 and H alpha 3 protons of glycine residues will exhibit different shifts, particularly in sheets; (c) H beta protons will also be sensitive to local secondary structure, but in different directions and to a smaller extent than H alpha protons; (d) H alpha protons in turns will generally be shifted upfield, except those in position 3 of type I turns. Examples of observed shift patterns in several proteins illustrate the application of these ideas.
肽基团对Hα和Hβ质子化学位移的贡献可用代表磁各向异性和静电相互作用的经验方程来模拟[奥萨佩伊,K.和凯斯,D.A.(1991年)《美国化学会志》,113,9436 - 9444]。利用这些方程,通过在扭转角空间的能量允许区域上对二肽进行平均,可以生成“无规卷曲”参考态的模型。此类计算支持了早期研究中使用的经验常数源自参考态中相邻肽贡献的观点,并表明对于甘氨酸和脯氨酸残基应使用特殊值,它们在允许的φ、ψ范围内与其他残基有显著差异。报告了这些残基的新常数,其在预测主链位移方面有显著改进。为了说明二级结构如何影响主链化学位移,我们报告了对螺旋、片层和转角的寡肽模型的计算。除了为α和β二级结构之间广泛认可的平均差异提出一种物理机制外,这些模型还表明了一些应预期的额外规律:(a)β片层边缘的Hα质子将具有两个残基的周期性;(b)甘氨酸残基的Hα2和Hα3质子将表现出不同的位移,特别是在片层中;(c)Hβ质子也将对局部二级结构敏感,但方向不同且程度小于Hα质子;(d)转角中的Hα质子通常将向高场位移,但I型转角第3位的质子除外。几种蛋白质中观察到的位移模式示例说明了这些观点的应用。