Shen Yang, Bax Ad
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
J Biomol NMR. 2007 Aug;38(4):289-302. doi: 10.1007/s10858-007-9166-6. Epub 2007 Jul 4.
Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in phi/psi/chi(1 )torsion angles and sequence similarity to the query triplet of interest. The database contains (15)N, (1)H(N), (1)H(alpha), (13)C(alpha), (13)C(beta) and (13)C' chemical shifts for 200 proteins for which a high resolution X-ray (< or =2.4 A) structure is available. The relative importance of the weighting factors for the phi/psi/chi(1) angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for (15)N, (1)H(N), (1)H(alpha), (13)C(alpha), (13)C(beta) and (13)C', respectively, including outliers.
蛋白质主链中或与之相连的原子核的化学位移对其局部环境极为敏感。本文介绍了一个计算机程序SPARTA,该程序利用与局部结构的这种相关性,在给定输入三维结构的情况下,通过在新生成的数据库中搜索相邻残基的三联体来预测蛋白质主链化学位移,这些三联体在φ/ψ/χ(1)扭转角和与感兴趣的查询三联体的序列相似性方面提供最佳匹配。该数据库包含200种蛋白质的(15)N、(1)H(N)、(1)H(α)、(13)C(α)、(13)C(β)和(13)C'化学位移,这些蛋白质都有高分辨率X射线(≤2.4 Å)结构。通过经验优化了φ/ψ/χ(1)角和序列相似性的加权因子的相对重要性。在考虑最近邻、环电流和氢键效应后,20个最佳匹配三联体中中心残基的加权平均二级位移用于预测已知结构蛋白质的化学位移。验证表明,SPARTA预测的位移与实验位移之间具有良好的一致性,包括异常值在内,(15)N、(1)H(N)、(1)H(α)、(13)C(α)、(13)C(β)和(13)C'的标准偏差分别为2.52、0.51、0.27、0.98、1.07和1.08 ppm。