Zimmerman D, Kulikowski C, Wang L, Lyons B, Montelione G T
Department of Computer Science, Rutgers University, Piscataway, NJ 08854.
J Biomol NMR. 1994 Mar;4(2):241-56. doi: 10.1007/BF00175251.
We have developed an automated approach for determining the sequential order of amino acid spin systems in small proteins. A key step in this procedure is the analysis of multidimensional HCC(CO)NH-TOCSY spectra that provide connections from the aliphatic resonances of residue i to the amide resonances of residue i + 1. These data, combined with information about the amino acid spin systems, provide sufficient constraints to assign most proton and nitrogen resonances of small proteins. Constraint propagation methods progressively narrow the set of possible assignments of amino acid spin systems to sequence-specific positions in the process of NMR data analysis. The constraint satisfaction paradigm provides a framework in which the necessary constraint-based reasoning can be expressed, while an object-oriented representation structures and facilitates the extensive list processing and indexing involved in matching. A prototype expert system, AUTOASSIGN, provides correct and nearly complete resonance assignments with one real and 31 simulated 3D NMR data sets for a 72-amino acid domain, derived from the Protein A of Staphylococcus aureus, and with 31 simulated NMR data sets for the 50-amino acid human type-alpha transforming growth factor.
我们已经开发出一种自动化方法,用于确定小蛋白质中氨基酸自旋系统的顺序。该过程的关键步骤是分析多维HCC(CO)NH-TOCSY谱,这些谱提供了从残基i的脂肪族共振到残基i + 1的酰胺共振的连接。这些数据与有关氨基酸自旋系统的信息相结合,提供了足够的约束条件来确定小蛋白质中大多数质子和氮的共振。在核磁共振数据分析过程中,约束传播方法逐步将氨基酸自旋系统的可能归属集缩小到序列特异性位置。约束满足范式提供了一个框架,在其中可以表达必要的基于约束的推理,而面向对象的表示结构并便于进行匹配中涉及的大量列表处理和索引。一个原型专家系统AUTOASSIGN,使用来自金黄色葡萄球菌蛋白A的一个真实和31个模拟的3D NMR数据集,以及50个氨基酸的人α型转化生长因子的31个模拟NMR数据集,提供了正确且几乎完整的共振归属。