Suppr超能文献

使用人工智能方法对蛋白质核磁共振谱峰归属进行自动化分析。

Automated analysis of protein NMR assignments using methods from artificial intelligence.

作者信息

Zimmerman D E, Kulikowski C A, Huang Y, Feng W, Tashiro M, Shimotakahara S, Chien C, Powers R, Montelione G T

机构信息

Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854-5638, USA.

出版信息

J Mol Biol. 1997 Jun 20;269(4):592-610. doi: 10.1006/jmbi.1997.1052.

Abstract

An expert system for determining resonance assignments from NMR spectra of proteins is described. Given the amino acid sequence, a two-dimensional 15N-1H heteronuclear correlation spectrum and seven to eight three-dimensional triple-resonance NMR spectra for seven proteins, AUTOASSIGN obtained an average of 98% of sequence-specific spin-system assignments with an error rate of less than 0.5%. Execution times on a Sparc 10 workstation varied from 16 seconds for smaller proteins with simple spectra to one to nine minutes for medium size proteins exhibiting numerous extra spin systems attributed to conformational isomerization. AUTOASSIGN combines symbolic constraint satisfaction methods with a domain-specific knowledge base to exploit the logical structure of the sequential assignment problem, the specific features of the various NMR experiments, and the expected chemical shift frequencies of different amino acids. The current implementation specializes in the analysis of data derived from the most sensitive of the currently available triple-resonance experiments. Potential extensions of the system for analysis of additional types of protein NMR data are also discussed.

摘要

描述了一种用于从蛋白质的核磁共振谱确定共振归属的专家系统。给定氨基酸序列、七种蛋白质的二维¹⁵N-¹H异核相关谱以及七到八个三维三重共振核磁共振谱,AUTOASSIGN平均获得了98%的序列特异性自旋系统归属,错误率小于0.5%。在Sparc 10工作站上的执行时间从具有简单谱的较小蛋白质的16秒到表现出大量归因于构象异构化的额外自旋系统的中等大小蛋白质的一到九分钟不等。AUTOASSIGN将符号约束满足方法与特定领域的知识库相结合,以利用顺序归属问题的逻辑结构、各种核磁共振实验的特定特征以及不同氨基酸的预期化学位移频率。当前实现专门用于分析来自当前可用的最灵敏的三重共振实验的数据。还讨论了该系统用于分析其他类型蛋白质核磁共振数据的潜在扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验