Suppr超能文献

[使用独立性系数进行生物学中的统计解释]

[Statistical interpretations in biology using a coefficient of independence].

作者信息

Guy J

机构信息

Laboratoire de Physique biomédicale, Paris.

出版信息

C R Seances Soc Biol Fil. 1993;187(3):404-13.

PMID:8019917
Abstract

From tables of contingency, chi 2-test is frequently used to decide whether two classes of events may be considered as independent or not. After a preliminary choice of a confidence level, the results of this method (rejection or non-rejection of a probability law of independence admitted as our null-hypothesis) are practically very difficult to soften, despite the fact that it would be often interesting to point out some further important informations. We are however able to deduce easily, from these same tables of contingency, a coefficient mu, characterizing the independence and belonging to [0, 1]: when the unit value can be reached by mu, a complete independence appears possible but, for mu < 1, we can also specify the proportion of independence law which is hidden within the complete law of probability associated with our random sample.

摘要

在列联表中,卡方检验经常被用来判定两类事件是否可被视为相互独立。在初步选定置信水平之后,尽管指出一些进一步的重要信息往往会很有意思,但这种方法的结果(拒绝或不拒绝被视为原假设的独立性概率定律)实际上很难缓和。然而,我们能够很容易地从这些相同的列联表中推导出一个系数μ,它表征独立性且取值范围在[0, 1]:当μ能达到单位值时,完全独立似乎是可能的,但对于μ < 1的情况,我们也可以明确在与我们的随机样本相关的完整概率定律中隐藏的独立定律的比例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验