Lipsitz S R, Fitzmaurice G M
Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Biometrics. 1996 Jun;52(2):751-62.
In this paper, the score test statistic for testing independence in R x C contingency tables with missing data is proposed. Under the null hypothesis of independence, the statistic has an approximate chi-squared distribution with (R - 1)(C - 1) degrees of freedom. The proposed test statistic is quite similar to the Pearson chi-squared statistic with complete data and, unlike the likelihood ratio statistic for testing independence, its computation is simple and noniterative. In addition, a score test statistic is proposed for testing independence when the rows and columns of the R x C table are ordinal. Finally, extensions of the score statistics to test for conditional independence in a set of (R x C) contingency tables with missing data are described. This yields score test statistics that are natural extensions of the Mantel-Haenszel statistic. An example, using a subset of data from the Six Cities Study, is presented to illustrate the methods.
本文提出了用于检验存在缺失数据的R×C列联表中独立性的计分检验统计量。在独立性的原假设下,该统计量具有自由度为(R - 1)(C - 1)的近似卡方分布。所提出的检验统计量与具有完整数据的Pearson卡方统计量非常相似,并且与用于检验独立性的似然比统计量不同,其计算简单且无需迭代。此外,还提出了一种用于检验R×C表的行和列是有序时独立性的计分检验统计量。最后,描述了将计分统计量扩展到检验一组存在缺失数据的(R×C)列联表中的条件独立性。这产生了作为Mantel-Haenszel统计量自然扩展的计分检验统计量。给出了一个使用“六城市研究”数据子集的示例来说明这些方法。