Suppr超能文献

对重复分类数据中的过渡和联合边际分布进行建模。

Modelling transitional and joint marginal distributions in repeated categorical data.

作者信息

Follmann D

机构信息

Biostatistics Research Branch, National Heart, Lung, and Blood Institute, Bethesda, MD 20892.

出版信息

Stat Med. 1994;13(5-7):467-77. doi: 10.1002/sim.4780130510.

Abstract

When a repeated measures endpoint classifies people into several categories, marginal and transitional models provide two distinct approaches for data analysis. Marginal models estimate the probabilities of being in different categories over time. Transitional models estimate the probability of changing between any two given states during follow-up visits. This paper develops transitional and marginal models and applies them to a clinical trial of treatments of opiate addiction. The primary outcome was the presence or absence of opiates in a thrice weekly urine test, administered for 17 weeks. Subjects frequently miss visits, however, and in effect respond in one of three ways to a visit: missing, opiates present or opiates absent. Thus we have three possible states. Our transitional model conditions on the current state and models the transition from state k to one of the other (0, ..., K-1) states using a mutinomial logit model. This model generalizes previous work of Muenz and Rubinstein. Significant covariates in this model are predictive of state changes. Our marginal model views the state at each time point, rather than the transitions, as the primary response. Here we model the probability of being in state k with a multinomial logit model. Correlation within individuals over visits can be handled by applying the approach of Zeger and Liang or the bootstrap. Significant covariates in this model can include more 'global' summaries of a person such as extent of previous opiate use. Both marginal and transitional models are needed to provide a complete description of an individual's behaviour over time since global summaries might not affect transitions. Of particular substantive interest is how the opiate treatments affect both the marginal and transition probabilities.

摘要

当重复测量终点将人群分为几类时,边际模型和过渡模型为数据分析提供了两种不同的方法。边际模型估计随时间处于不同类别的概率。过渡模型估计在随访期间在任意两个给定状态之间转换的概率。本文开发了过渡模型和边际模型,并将它们应用于阿片类药物成瘾治疗的临床试验。主要结局是在为期17周的每周三次尿液检测中是否存在阿片类药物。然而,受试者经常错过随访,实际上对随访有三种反应方式之一:错过、存在阿片类药物或不存在阿片类药物。因此我们有三种可能的状态。我们的过渡模型以上一状态为条件,并使用多项logit模型对从状态k转换到其他(0,...,K-1)状态之一进行建模。该模型推广了Muenz和Rubinstein之前的工作。此模型中的显著协变量可预测状态变化。我们的边际模型将每个时间点的状态而非转换视为主要反应。在这里,我们使用多项logit模型对处于状态k的概率进行建模。个体在各次随访之间的相关性可通过应用Zeger和Liang的方法或自助法来处理。此模型中的显著协变量可包括对一个人的更多“全局”总结,例如先前阿片类药物使用的程度。由于全局总结可能不影响转换,因此需要边际模型和过渡模型来完整描述个体随时间的行为。特别具有实质意义的是阿片类药物治疗如何影响边际概率和转换概率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验