Suppr超能文献

PCR-based homology probing reveals a family of GABA receptor-like genes in Drosophila melanogaster.

作者信息

Henderson J E, Knipple D C, Soderlund D M

机构信息

New York State Agricultural Experiment Station, Cornell University, Geneva 14456.

出版信息

Insect Biochem Mol Biol. 1994 Apr;24(4):363-71. doi: 10.1016/0965-1748(94)90029-9.

Abstract

A polymerase chain reaction (PCR)-based homology probing strategy was employed to screen Drosophila melanogaster genomic DNA for sequences encoding a conserved amino acid 'signature motif' known to be present in vertebrate GABA receptor and glycine receptor subunit genes. This approach yielded three discrete amplified sequence elements (designated LCCH1, LCCH2, and LCCH3) that contained open reading frames and > 40% amino acid sequence identity to the corresponding regions of vertebrate ligand-gated chloride channel genes. Genomic DNA clones corresponding to each element were isolated and sequenced, and predicted amino acid sequences corresponding to the second (M2) and third (M3) transmembrane domains of vertebrate genes were analyzed for identity or similarity to known sequences. LCCH1 was identical to the Rdl gene, a known GABA receptor subunit gene from D. melanogaster, whereas LCCH2 and LCCH3 were novel D. melanogaster sequences that exhibited structural similarity to other members of the ligand-gated chloride channel gene family. LCCH2 was equally divergent in M2 and M3 (46-49% amino acid identity) from all other known members of this family and may therefore represent a new subunit or receptor class within this family. LCCH2 was localized by in situ hybridization to cytogenetic region 75A on the left arm of chromosome 3. LCCH3 was closely related to mammalian (79% amino acid identity) and snail (96% amino acid identity) GABA receptor beta subunits and may therefore be the homologue in D. melanogaster of this subunit class. LCCH3 was localized by in situ hybridization to cytogenetic region 13F on the X chromosome.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验