Wadsworth J D, Doorty K B, Strong P N
Department of Paediatrics and Neonatal Medicine, Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom.
J Biol Chem. 1994 Jul 8;269(27):18053-61.
Apamin, a peptide neurotoxin from bee venom, blocks small conductance Ca(2+)-activated K+ channels in central synapses and peripheral tissues. Using 125I-apamin, single classes of high affinity binding sites (Kd 1-3 pM) were identified on plasma membranes from rat, rabbit, guinea pig, and bovine brain and from rabbit, guinea pig, and bovine liver. Binding was sensitive to scyllatoxin, dequalinium, gallamine, and d-tubocurarine but not to charybdotoxin, toxin I, or mast cell degranulating peptide. In contrast, saturable binding of 125I-apamin to rat liver plasma membranes was virtually undetectable, thereby providing a correlation with the ability to measure apamin-sensitive Ca(2+)-activated potassium currents in rabbit and guinea pig hepatocytes but not in rat hepatocytes. In agreement with membrane binding studies, homobifunctional cross-linkers identified apparently identical 33-kDa 125I-apamin binding polypeptides on brain plasma membranes from all species and analogous but distinct polypeptides on plasma membranes from rabbit, guinea pig, and bovine liver. None of these affinity-labeled polypeptides were detectable on plasma membranes from rat liver. Affinity labeling was abolished on both liver and brain membranes by apamin, scyllatoxin, dequalinium, gallamine, and d-tubocurarine. These results indicate that comparable approximately 30-kDa polypeptides may fulfill equivalent functional roles within putative subtypes of apamin-sensitive small conductance Ca(2+)-activated K+ channels.