Spadaro J T, Renganathan V
Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000.
Arch Biochem Biophys. 1994 Jul;312(1):301-7. doi: 10.1006/abbi.1994.1313.
Disperse Yellow 3 [2-(4'-acetamidophenylazo)-4-methylphenol] (DY3) (I) is an important yellow dye used in industry and is also a carcinogen. Earlier we demonstrated that lignin-degrading cultures of white-rot basidiomycete Phanerochaete chrysosporium degrade DY3 to CO2. In this report, we have examined the degradation of DY3 and its naphthol analog, 1-(4'-acetamidophenylazo)-2-naphthol (NDY3) (II) by lignin peroxidase, horseradish peroxidase, and Mn(III)-malonate complex (a manganese peroxidase mimic). Lignin and manganese peroxidases are two extracellular peroxidase produced by ligninolytic cultures of P. chrysosporium and are involved in the degradation of lignin and various other environmental pollutants by this fungus. DY3 oxidation by peroxidases yields 4-methyl-1,2-benzoquinone (III), acetanilide (IV), and a dimer of DY3 (V) as products. NDY3 oxidation yields acetanilide (IV) and 1,2-naphthoquinone (VI). In deuterium incorporation experiments with DY3, 55-67% incorporation of deuterium from dioxane-d8 into acetanilide (IV) is observed. However, when D2O is the donor, deuterium is not incorporated into acetanilide (IV). Based on these results, a mechanism for azo dye degradation is proposed. The H2O2-oxidized forms of a peroxidase oxidize the phenolic ring of DY3, or its analogs, by two electrons to produce a carbonium ion, which is located on the carbon bearing the azo linkage. Water attacks the carbonium ion, producing an unstable intermediate which breaks down to generate 1,2-naphthoquinone (VI) or 4-methyl-1,2-benzoquinone (III) and 4-acetamido-phenyldiazene. O2, H2O2-oxidized peroxidase, or a metal ion, oxidize the phenyldiazene by one electron to produce a phenyldiazene radical, which cleaves homolytically to generate 4-acetamidophenyl radical and molecular nitrogen. The 4-acetamidophenyl radical then abstracts a hydrogen radical from the surroundings to produce acetanilide (IV). DY3 degradation by whole cultures of P. chrysosporium yields acetanilide as the major product. This suggests that lignin peroxidase and manganese peroxidase are involved in the in vivo metabolism of DY3 by P. chrysosporium.
分散黄3 [2-(4'-乙酰氨基苯基偶氮)-4-甲基苯酚] (DY3) (I) 是一种重要的工业黄色染料,也是一种致癌物。此前我们证明,白腐担子菌黄孢原毛平革菌的木质素降解培养物可将DY3降解为二氧化碳。在本报告中,我们研究了木质素过氧化物酶、辣根过氧化物酶和Mn(III)-丙二酸络合物(一种锰过氧化物酶模拟物)对DY3及其萘酚类似物1-(4'-乙酰氨基苯基偶氮)-2-萘酚 (NDY3) (II) 的降解情况。木质素过氧化物酶和锰过氧化物酶是黄孢原毛平革菌木质素分解培养物产生的两种细胞外过氧化物酶,参与该真菌对木质素和各种其他环境污染物的降解。过氧化物酶氧化DY3产生4-甲基-1,2-苯醌 (III)、乙酰苯胺 (IV) 和DY3的二聚体 (V) 作为产物。氧化NDY3产生乙酰苯胺 (IV) 和1,2-萘醌 (VI)。在用DY3进行的氘掺入实验中,观察到55-67% 的氘从二氧六环-d8掺入乙酰苯胺 (IV) 中。然而,当D2O作为供体时,氘不会掺入乙酰苯胺 (IV) 中。基于这些结果,提出了一种偶氮染料降解机制。过氧化物酶的H2O2氧化形式通过双电子氧化DY3或其类似物的酚环,产生一个碳正离子,该碳正离子位于带有偶氮键的碳原子上。水攻击碳正离子,产生一个不稳定的中间体,该中间体分解生成1,2-萘醌 (VI) 或4-甲基-1,2-苯醌 (III) 和4-乙酰氨基苯重氮。O2、H2O2氧化的过氧化物酶或金属离子通过单电子氧化苯重氮,产生苯重氮自由基,该自由基进行均裂以生成4-乙酰氨基苯基自由基和分子氮。然后4-乙酰氨基苯基自由基从周围环境中夺取一个氢自由基以产生乙酰苯胺 (IV)。黄孢原毛平革菌的全培养物对DY3的降解产生乙酰苯胺作为主要产物。这表明木质素过氧化物酶和锰过氧化物酶参与了黄孢原毛平革菌对DY3的体内代谢。