Yung Y F, Bentler P M
Department of Psychology, University of California, Los Angeles 90024-1563.
Br J Math Stat Psychol. 1994 May;47 ( Pt 1):63-84. doi: 10.1111/j.2044-8317.1994.tb01025.x.
The asymptotically distribution-free (ADF) test statistic for covariance structure analysis (CSA) has been reported to perform very poorly in simulation studies, i.e. it leads to inaccurate decisions regarding the adequacy of models of psychological processes. It is shown in the present study that the poor performance of the ADF test statistic is due to inadequate estimation of the weight matrix (W = gamma -1), which is a critical quantity in the ADF theory. Bootstrap procedures based on Hall's bias reduction perspective are proposed to correct the ADF test statistic. It is shown that the bootstrap correction of additive bias on the ADF test statistic yields the desired tail behaviour as the sample size reaches 500 for a 15-variable-3-factor confirmatory factor-analytic model, even if the distribution of the observed variables is not multivariate normal and the latent factors are dependent. These results help to revive the ADF theory in CSA.
据报道,协方差结构分析(CSA)中的渐近分布自由(ADF)检验统计量在模拟研究中的表现非常糟糕,即它会导致关于心理过程模型充分性的决策不准确。本研究表明,ADF检验统计量表现不佳的原因是权重矩阵(W = gamma -1)估计不足,而权重矩阵是ADF理论中的一个关键量。基于霍尔偏差减少观点的自助程序被提出来校正ADF检验统计量。结果表明,对于一个15变量3因子验证性因子分析模型,当样本量达到500时,对ADF检验统计量的加法偏差进行自助校正会产生理想的尾部行为,即使观测变量的分布不是多元正态分布且潜在因子是相关的。这些结果有助于复兴CSA中的ADF理论。