Wang P, Reed M, Wang Y, Mayr G, Stenger J E, Anderson M E, Schwedes J F, Tegtmeyer P
Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook 11794.
Mol Cell Biol. 1994 Aug;14(8):5182-91. doi: 10.1128/mcb.14.8.5182-5191.1994.
Wild-type p53 forms tetramers and multiples of tetramers. Friedman et al. (P. N. Friedman, X. B. Chen, J. Bargonetti, and C. Prives, Proc. Natl. Acad. Sci. USA 90:3319-3323, 1993) have reported that human p53 behaves as a larger molecule during gel filtration than it does during sucrose gradient sedimentation. These differences argue that wild-type p53 has a nonglobular shape. To identify structural and oligomerization domains in p53, we have investigated the physical properties of purified segments of p53. The central, specific DNA-binding domain within murine amino acids 80 to 320 and human amino acids 83 to 323 behaves predominantly as monomers during analysis by sedimentation, gel filtration, and gel electrophoresis. This consistent behavior argues that the central region of p53 is globular in shape. Under appropriate conditions, however, this segment can form transient oligomers without apparent preference for a single oligomeric structure. This region does not enhance transformation by other oncogenes. The biological implications of transient oligomerization by this central segment, therefore, remain to be demonstrated. Like wild-type p53, the C terminus, consisting of murine amino acids 280 to 390 and human amino acids 283 to 393, behaves anomalously during gel filtration and apparently has a nonglobular shape. Within this region, murine amino acids 315 to 350 and human amino acids 323 to 355 are sufficient for assembly of stable tetramers. The finding that murine amino acids 315 to 360 enhance transformation by other oncogenes strongly supports the role of p53 tetramerization in oncogenesis. Amino acids 330 to 390 of murine p53 and amino acids 340 to 393 of human p53, which have been implicated by Sturzbecher et al. in tetramerization (H.-W. Sturzbecher, R. Brain, C. Addison, K. Rudge, M. Remm, M. Grimaldi, E. Keenan, and J. R. Jenkins, Oncogene 7:1513-1523, 1992), do not form stable tetramers under our conditions. Our findings indicate that p53 has at least two autonomous oligomerization domains: a strong tetramerization domain in its C-terminal region and a weaker oligomerization domain in the central DNA binding region of p53. Together, these domains account for the formation of tetramers and multiples of tetramers by wild-type p53. The tetramerization domain is the major determinant of the dominant negative phenotype leading to transformation by mutant p53s.
野生型p53形成四聚体以及四聚体的倍数形式。弗里德曼等人(P.N.弗里德曼、陈XB、J.巴尔戈内蒂和C.普里夫斯,《美国国家科学院院刊》90:3319 - 3323,1993年)报道,在凝胶过滤过程中,人p53表现为比在蔗糖梯度沉降过程中更大的分子。这些差异表明野生型p53具有非球状形状。为了鉴定p53中的结构域和寡聚化结构域,我们研究了纯化的p53片段的物理性质。小鼠氨基酸80至320以及人氨基酸83至323内的中央特异性DNA结合结构域在沉降、凝胶过滤和凝胶电泳分析过程中主要表现为单体。这种一致的行为表明p53的中央区域呈球状。然而,在适当条件下,该片段可以形成瞬时寡聚体,且对单一寡聚体结构没有明显偏好。该区域不会增强其他癌基因的转化作用。因此,该中央片段瞬时寡聚化的生物学意义仍有待证明。与野生型p53一样,由小鼠氨基酸280至390以及人氨基酸283至393组成的C末端在凝胶过滤过程中表现异常,显然具有非球状形状。在该区域内,小鼠氨基酸315至350以及人氨基酸323至355足以组装稳定的四聚体。小鼠氨基酸315至360增强其他癌基因转化作用的这一发现有力地支持了p53四聚化在肿瘤发生中的作用。小鼠p53的氨基酸330至390以及人p53的氨基酸340至393,斯特尔茨贝歇尔等人(H.-W.斯特尔茨贝歇尔、R.布雷恩、C.艾迪生、K.鲁奇、M.雷姆、M.格里马尔迪、E.基南和J.R.詹金斯,《癌基因》7:1513 - 1523,1992年)认为它们参与四聚化,但在我们的条件下不会形成稳定的四聚体。我们的研究结果表明,p53至少有两个自主的寡聚化结构域:其C末端区域有一个强四聚化结构域,以及p53中央DNA结合区域有一个较弱的寡聚化结构域。这些结构域共同构成了野生型p53形成四聚体以及四聚体倍数形式的原因。四聚化结构域是导致突变型p53转化的显性负性表型的主要决定因素。