Suppr超能文献

Heterotrimeric GTP-binding proteins (G proteins) and ADP-ribosylation factor (ARF) regulate priming of endosomal membranes for fusion.

作者信息

Lenhard J M, Colombo M I, Stahl P D

机构信息

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110.

出版信息

Arch Biochem Biophys. 1994 Aug 1;312(2):474-9. doi: 10.1006/abbi.1994.1334.

Abstract

An in vitro assay that measures endosome fusion was used to characterize the role of guanosine triphosphate (GTP)-binding proteins in endocytosis. Guanosine 5',3-(thio)triphosphate (GTP gamma S), a nonhydrolyzable analog of GTP, stimulates the binding of cytosolic factors to the endosomal membrane (priming). GTP gamma S also enhances vesicle aggregation, resulting in the formation of an intermediate that is resistant to dilution. In this report we demonstrate that priming precedes the appearance of a dilution-resistant intermediate. Thus, GTP-binding proteins are involved in multiple sequential events preceding endosome fusion. Both heterotrimeric G proteins (G proteins) and ADP-ribosylation factors (ARFs) are GTP-binding proteins that regulate undefined steps involved in endocytosis. The addition of G beta gamma subunits of G proteins to the in vitro fusion assay resulted in inhibition of priming. In contrast, addition of ARF to the assay enhanced priming. Thus, heterotrimeric G proteins and ARF may regulate endocytosis by mediating the binding of cytosolic factor(s) required for fusion to the endosomal membrane. Taken together, the results show that multiple GTP-binding proteins regulate a series of distinct biochemical events required for endosome fusion.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验