Dwarkadas S, Schäffer A A, Cottingham R W, Cox A L, Keleher P, Zwaenepoel W
Department of Computer Science, Rice University, Houston, Tex.
Hum Hered. 1994 May-Jun;44(3):127-41. doi: 10.1159/000154205.
We describe a parallel implementation of a genetic-linkage analysis program that achieves good speed improvement, even for analyses on a single pedigree and with a single starting recombination fraction vector. Our parallel implementation has been run on three different platforms: an Ethernet network of workstations, a higher-bandwidth asynchronous transfer mode (ATM) network of workstations, and a shared-memory multiprocessor. The same program, written in a shared-memory programming style, is used on all platforms. On the workstation networks, the hardware does not provide shared memory, so the program executes on a distributed shared memory system that implements shared memory in software. These three platforms represent different points on the price/performance scale. Ethernet networks are cheap and omnipresent, ATM networks are an emerging technology that offers higher bandwidth, and shared-memory multiprocessors offer the best performance because communication is implemented entirely by hardware. On 8 processors and for the longer runs, we achieve speedups between 3.5 and 5 on the Ethernet network and between 4.8 and 6 on the ATM network. On the shared-memory multiprocessor, we achieve speedups in the 5.5-6.5 range for all runs.
我们描述了一种基因连锁分析程序的并行实现,即使是对单个家系和单个起始重组分数向量进行分析,该实现也能显著提高速度。我们的并行实现在三种不同平台上运行过:工作站以太网、高带宽异步传输模式(ATM)工作站网络以及共享内存多处理器。所有平台都使用以共享内存编程风格编写的同一个程序。在工作站网络上,硬件不提供共享内存,因此程序在通过软件实现共享内存的分布式共享内存系统上执行。这三个平台代表了价格/性能尺度上的不同点。以太网价格低廉且无处不在,ATM网络是一种新兴技术,提供更高的带宽,而共享内存多处理器性能最佳,因为通信完全由硬件实现。在8个处理器上且运行时间较长时,我们在以太网网络上实现了3.5到5倍的加速,在ATM网络上实现了4.8到6倍的加速。在共享内存多处理器上,所有运行情况下我们实现的加速范围在5.5 - 6.5之间。