Price N P, Kelly T M, Raetz C R, Carlson R W
Complex Carbohydrate Research Center, University of Georgia, Athens 30605.
J Bacteriol. 1994 Aug;176(15):4646-55. doi: 10.1128/jb.176.15.4646-4655.1994.
Lipopolysaccharides (LPSs) are prominent structural components of the outer membranes of gram-negative bacteria. In Rhizobium spp. LPS functions as a determinant of the nitrogen-fixing symbiosis with legumes. LPS is anchored to the outer surface of the outer membrane by the lipid A moiety, the principal lipid component of the outer bacterial surface. Several notable structural differences exist between the lipid A of Escherichia coli and that of Rhizobium leguminosarum, suggesting that diverse biosynthetic pathways may also exist. These differences include the lack of phosphate groups and the presence of a 4'-linked GalA residue in the latter. However, we now show that UDP-GlcNAc plays a key role in the biosynthesis of lipid A in R. leguminosarum, as it does in E. coli. 32P-labeled monosaccharide and disaccharide lipid A intermediates from E. coli were isolated and tested as substrates in cell extracts of R. leguminosarum biovars phaseoli and viciae. Six enzymes that catalyze the early steps of E. coli lipid A biosynthesis were also present in extracts of R. leguminosarum. Our results show that all the enzymes of the pathway leading to the formation of the intermediate 3-deoxy-D-manno-2-octulosonic acid (Kdo2)-lipid IVA are functional in both R. leguminosarum biovars. These enzymes include (i) UDP-GlcNAc 3-O-acyltransferase; (ii) UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase; (iii) UDP-3-O-(R-3-hydroxymyristoyl)-GlcN N-acyltransferase; (iv) disaccharide synthase; (v) 4'-kinase; and (vi) Kdo transferase. Our data suggest that the early steps in lipid A biosynthesis are conserved and that the divergence leading to rhizobial lipid A may occur at a later stage in the pathway, presumably after the attachment of the Kdo residues.
脂多糖(LPSs)是革兰氏阴性菌外膜的主要结构成分。在根瘤菌属中,LPS是与豆科植物进行固氮共生的决定因素。LPS通过脂质A部分锚定在外膜的外表面,脂质A是细菌外表面的主要脂质成分。大肠杆菌的脂质A与豆科根瘤菌的脂质A在结构上存在一些显著差异,这表明可能也存在不同的生物合成途径。这些差异包括后者缺乏磷酸基团以及存在一个4'-连接的GalA残基。然而,我们现在表明,UDP-GlcNAc在豆科根瘤菌脂质A的生物合成中起着关键作用,就像在大肠杆菌中一样。从大肠杆菌中分离出32P标记的单糖和二糖脂质A中间体,并在菜豆根瘤菌生物型和蚕豆根瘤菌的细胞提取物中作为底物进行测试。催化大肠杆菌脂质A生物合成早期步骤的六种酶也存在于豆科根瘤菌的提取物中。我们的结果表明,导致中间体3-脱氧-D-甘露糖-2-辛酮糖酸(Kdo2)-脂质IV A形成的途径中的所有酶在两种豆科根瘤菌生物型中都具有功能。这些酶包括:(i)UDP-GlcNAc 3-O-酰基转移酶;(ii)UDP-3-O-(R-3-羟基肉豆蔻酰基)-GlcNAc脱乙酰酶;(iii)UDP-3-O-(R-3-羟基肉豆蔻酰基)-GlcN N-酰基转移酶;(iv)二糖合酶;(v)4'-激酶;以及(vi)Kdo转移酶。我们的数据表明,脂质A生物合成的早期步骤是保守的,导致根瘤菌脂质A的差异可能发生在该途径的后期,大概是在Kdo残基连接之后。