Suppr超能文献

通过2H-NMR监测脂质头部基团对双层水合作用的分子响应。

Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR.

作者信息

Ulrich A S, Watts A

机构信息

Department of Biochemistry, University of Oxford, England.

出版信息

Biophys J. 1994 May;66(5):1441-9. doi: 10.1016/S0006-3495(94)80934-8.

Abstract

The effect of hydration on the conformation and dynamics of the phosphatidylcholine headgroup has been investigated by 2H-NMR measurements of liquid crystalline dioleoylphosphatidylcholine in multilamellar liposomes. Deuterium quadrupole splittings (delta nu Q) and spin-lattice relaxation rates (1/T1) were recorded for three selectively labeled headgroup segments (alpha, beta, and gamma) over the range of water/lipid mole ratios from 4 to 100. The smooth changes in delta nu Q and 1/T1 are found to essentially parallel each other and can be described by a single exponential decay function. Progressive hydration thus induces a concerted change in headgroup conformation together with an increase in its rate of motion (detected by delta nu Q and 1/T1, respectively). The enhanced mobility is partially due to a shift in the lipid phase transition temperature (as monitored by differential scanning calorimetry) and is furthermore attributed to an entropic contribution. It is concluded that the choline dipole becomes slightly raised in its average orientation into the aqueous layer and that the rate is increased at which the headgroup is fluctuating and protruding. The observed molecular changes can thus be accommodated within a model where the effective accessible headgroup volume expands with increasing hydration.

摘要

通过对多层脂质体中液晶态二油酰磷脂酰胆碱进行2H-NMR测量,研究了水合作用对磷脂酰胆碱头部基团构象和动力学的影响。在水/脂质摩尔比为4至100的范围内,记录了三个选择性标记的头部基团片段(α、β和γ)的氘四极分裂(δνQ)和自旋晶格弛豫率(1/T1)。发现δνQ和1/T1的平滑变化基本相互平行,并且可以用单一指数衰减函数来描述。因此,渐进水合作用会引起头部基团构象的协同变化,同时其运动速率增加(分别由δνQ和1/T1检测)。流动性增强部分是由于脂质相转变温度的变化(通过差示扫描量热法监测),并且还归因于熵的贡献。得出的结论是,胆碱偶极在其平均取向中略微升高进入水层,并且头部基团波动和突出的速率增加。因此,观察到的分子变化可以纳入一个模型,其中有效可及的头部基团体积随着水合作用的增加而扩大。

相似文献

1
Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR.
Biophys J. 1994 May;66(5):1441-9. doi: 10.1016/S0006-3495(94)80934-8.
2
Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.
Biophys J. 1995 Aug;69(2):518-23. doi: 10.1016/S0006-3495(95)79925-8.
6
Dynamics of an integral membrane peptide: a deuterium NMR relaxation study of gramicidin.
Biophys J. 1994 May;66(5):1429-40. doi: 10.1016/S0006-3495(94)80933-6.
8
The pH dependence of headgroup and acyl chain structure and dynamics of phosphatidylserine, studied by 2H-NMR.
Chem Phys Lipids. 1990 Apr;54(1):33-42. doi: 10.1016/0009-3084(90)90057-x.

引用本文的文献

1
Time-domain proton-detected local-field NMR for molecular structure determination in complex lipid membranes.
Magn Reson (Gott). 2023 May 12;4(1):115-127. doi: 10.5194/mr-4-115-2023. eCollection 2023.
2
Rotational decoupling between the hydrophilic and hydrophobic regions in lipid membranes.
Biophys J. 2022 Jan 4;121(1):68-78. doi: 10.1016/j.bpj.2021.12.003. Epub 2021 Dec 11.
3
What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on?
Front Chem. 2021 Oct 29;9:738350. doi: 10.3389/fchem.2021.738350. eCollection 2021.
4
Using Open Data to Rapidly Benchmark Biomolecular Simulations: Phospholipid Conformational Dynamics.
J Chem Inf Model. 2021 Feb 22;61(2):938-949. doi: 10.1021/acs.jcim.0c01299. Epub 2021 Jan 26.
5
Polar Interactions Play an Important Role in the Energetics of the Main Phase Transition of Phosphatidylcholine Membranes.
ACS Omega. 2019 Jan 8;4(1):518-527. doi: 10.1021/acsomega.8b03102. eCollection 2019 Jan 31.
6
Lipid Head Group Parameterization for GROMOS 54A8: A Consistent Approach with Protein Force Field Description.
J Chem Theory Comput. 2019 Oct 8;15(10):5175-5193. doi: 10.1021/acs.jctc.9b00509. Epub 2019 Sep 9.
7
On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR.
J Biomol NMR. 2017 Mar;67(3):165-178. doi: 10.1007/s10858-017-0089-6. Epub 2017 Feb 22.
8
Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions.
J Phys Chem B. 2015 Dec 10;119(49):15075-88. doi: 10.1021/acs.jpcb.5b04878. Epub 2015 Nov 25.
10
A Hybrid Approach for Highly Coarse-grained Lipid Bilayer Models.
J Chem Theory Comput. 2013 Jan 8;9(1):750-765. doi: 10.1021/ct300751h.

本文引用的文献

1
The structure of the liquid-crystalline phasis of lipid-water systems.
J Cell Biol. 1962 Feb;12(2):207-19. doi: 10.1083/jcb.12.2.207.
2
Lipid conformation in model membranes and biological membranes.
Q Rev Biophys. 1980 Feb;13(1):19-61. doi: 10.1017/s0033583500000305.
4
The description of membrane lipid conformation, order and dynamics by 2H-NMR.
Biochim Biophys Acta. 1983 Mar 21;737(1):117-71. doi: 10.1016/0304-4157(83)90015-1.
7
Phospholipid hydration studied by deuteron magnetic resonace spectroscopy.
Chem Phys Lipids. 1974 Feb;12(1):1-16. doi: 10.1016/0009-3084(74)90064-4.
8
The hydration of phospholipids.
Biochim Biophys Acta. 1974 Jan 23;337(1):79-91. doi: 10.1016/0005-2760(74)90042-3.
9
10
Steric repulsion between phosphatidylcholine bilayers.
Biochemistry. 1987 Nov 17;26(23):7325-32. doi: 10.1021/bi00397a020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验