Randall Centre for Cell and Molecular Biology , King's College London , London SE1 1UL , U.K.
J Chem Theory Comput. 2019 Oct 8;15(10):5175-5193. doi: 10.1021/acs.jctc.9b00509. Epub 2019 Sep 9.
Membranes are a crucial component of both bacterial and mammalian cells, being involved in signaling, transport, and compartmentalization. This versatility requires a variety of lipid species to tailor the membrane's behavior as needed, increasing the complexity of the system. Molecular dynamics simulations have been successfully applied to study model membranes and their interactions with proteins, elucidating some crucial mechanisms at the atomistic detail and thus complementing experimental techniques. An accurate description of the functional interplay of the diverse membrane components crucially depends on the selected parameters that define the adopted force field. A coherent parameterization for lipids and proteins is therefore needed. In this work, we propose and validate new lipid head group parameters for the GROMOS 54A8 force field, making use of recently published parametrizations for key chemical moieties present in lipids. We make use additionally of a new canonical set of partial charges for lipids, chosen to be consistent with the parameterization of soluble molecules such as proteins. We test the derived parameters on five phosphocholine model bilayers, composed of lipid patches four times larger than the ones used in previous studies, and run 500 ns long simulations of each system. Reproduction of experimental data like area per lipid and deuterium order parameters is good and comparable with previous parameterizations, as well as the description of liquid crystal to gel-phase transition. On the other hand, the orientational behavior of the head groups is more realistic for this new parameter set, and this can be crucial in the description of interactions with other polar molecules. For that reason, we tested the interaction of the antimicrobial peptide lactoferricin with two model membranes showing that the new parameters lead to a weaker peptide-membrane binding and give a more realistic outcome in comparing binding to antimicrobial versus mammal membranes.
膜是细菌和哺乳动物细胞的重要组成部分,参与信号转导、物质运输和区室化。这种多功能性需要各种脂质种类来根据需要调整膜的行为,从而增加了系统的复杂性。分子动力学模拟已成功应用于研究模型膜及其与蛋白质的相互作用,阐明了一些关键的原子细节机制,从而补充了实验技术。准确描述各种膜成分的功能相互作用,关键取决于用于定义采用力场的参数。因此,需要对脂质和蛋白质进行一致的参数化。在这项工作中,我们提出并验证了 GROMOS 54A8 力场中新型脂质头基参数,利用最近发表的脂质中关键化学部分的参数化。我们还利用了一套新的脂质规范的部分电荷,以与可溶性分子(如蛋白质)的参数化一致。我们在五个磷酸胆碱模型双层膜上测试了推导的参数,这些双层膜由比以前研究中使用的脂质补丁大四倍的脂质补丁组成,并对每个系统进行了 500ns 长的模拟。面积和氘序参数等实验数据的再现性良好,与以前的参数化以及向凝胶相的转变相当,并且头基的取向行为对于这个新参数集更现实,这对于描述与其他极性分子的相互作用至关重要。为此,我们测试了抗菌肽乳铁蛋白与两种模型膜的相互作用,结果表明,新参数导致肽与膜的结合较弱,并在比较与抗菌和哺乳动物膜的结合时提供了更现实的结果。