Suppr超能文献

腹侧耳蜗核中规则发放神经元的电紧张结构可能决定其反应特性。

The electrotonic structure of regular-spiking neurons in the ventral cochlear nucleus may determine their response properties.

作者信息

White J A, Young E D, Manis P B

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

出版信息

J Neurophysiol. 1994 May;71(5):1774-86. doi: 10.1152/jn.1994.71.5.1774.

Abstract
  1. Intracellular recordings were obtained from neurons in parasagittal brain slices of the guinea pig ventral cochlear nucleus (VCN). The principal neurons of the VCN can be parceled into two categories. Regular-spiking (Type I) neurons have a linear current-voltage (I-V) relationship over a large range of intracellularly injected currents and fire tonically in response to suprathreshold depolarizing currents. Phasically spiking (Type II) neurons have a nonlinear I-V relationship and fire only phasically at the onset of a depolarizing current or offset of a hyperpolarizing current. Regular-spiking neurons have been shown to be of the stellate morphological type, whereas phasically spiking neurons have been shown to be bushy cells. 2. The electrotonic structure of regular-spiking neurons was studied by applying previously developed modeling techniques based on the somatic shunt model. In these techniques, physiological data are used to determine the set of parameters best describing the neuron. As predicted from previous theoretical investigations, the use of an anatomic constraint (somatic surface area) reduces the variance in estimates of model parameters, especially for the dendritic membrane time constant tau D. 3. Model representations of regular-spiking cells fall into two categories: those with (passive) somatic membrane properties that are nearly identical to those of the dendrite (8/15 cases), and those with a significant amount of somatic shunt (7/15). Estimates of tau D (mean = 7.7 ms) are lower than those often described in the literature. We argue that this low value of tau D may be related to the need of neurons in the auditory brainstem to operate at high firing rates and/or to encode audio-frequency temporal fluctuations. 4. Dendritic transfer functions were calculated as functions of synaptic location using somatic shunt representations of regular-spiking neurons. These transfer functions allow us to predict that mid-range auditory frequencies (approximately 1 kHz) are greatly attenuated, even for synapses near the soma. Thus it is suggested that the electrotonic architecture of regular-spiking cells creates sufficient low-pass filtering of synaptic inputs to reduce the synchronization of firing of these neurons to mid-frequency auditory stimuli.
摘要
  1. 从豚鼠腹侧耳蜗核(VCN)矢状旁脑片的神经元中获得细胞内记录。VCN的主要神经元可分为两类。规则放电(I型)神经元在细胞内注入电流的大范围变化内具有线性电流-电压(I-V)关系,并在超阈值去极化电流作用下产生持续放电。相位性放电(II型)神经元具有非线性I-V关系,仅在去极化电流开始或超极化电流结束时产生相位性放电。已证明规则放电神经元为星状形态类型,而相位性放电神经元为浓密细胞。2. 通过应用基于体细胞分流模型的先前开发的建模技术,研究了规则放电神经元的电紧张结构。在这些技术中,生理数据用于确定最能描述神经元的参数集。正如先前理论研究所预测的,使用解剖学约束(体细胞表面积)可减少模型参数估计的方差,尤其是对于树突膜时间常数tau D。3. 规则放电细胞的模型表示分为两类:一类(8/15例)体细胞膜特性(被动)与树突几乎相同,另一类(7/15)体细胞有大量分流。tau D的估计值(平均值 = 7.7毫秒)低于文献中经常描述的值。我们认为tau D的这个低值可能与听觉脑干中的神经元以高放电率运作和/或编码音频频率时间波动的需求有关。4. 使用规则放电神经元的体细胞分流表示,将树突传递函数计算为突触位置的函数。这些传递函数使我们能够预测,即使对于靠近体细胞的突触,中等范围的听觉频率(约1千赫)也会大幅衰减。因此,有人提出规则放电细胞的电紧张结构对突触输入产生足够的低通滤波,以减少这些神经元对中频听觉刺激的放电同步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验