Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wróblewski H, Blanco C, Bernard T
Département Membranes et Osmorégulation, Centre National de la Recherche Scientifique (CNRS) URA 256, Rennes, France.
J Bacteriol. 1994 Sep;176(17):5210-7. doi: 10.1128/jb.176.17.5210-5217.1994.
After having shown that ectoine (a tetrahydropyrimidine) displays osmoprotective properties towards Escherichia coli (M. Jebbar, R. Talibart, K. Gloux, T. Bernard, and Blanco, J. Bacteriol. 174:5027-5035, 1992), we have investigated the involvement of this molecule in the osmotic adaptation of Rhizobium meliloti. Ectoine appeared almost as effective as glycine betaine in improving the growth of R. meliloti under adverse osmotic conditions (0.5 M NaCl). Moreover, improvement of growth of rhizobial strains insensitive to glycine betaine was also observed. Ectoine transport proved inducible, periplasmic protein dependent, and, as shown by competition experiments, distinct from the transport of glycine betaine. Medium osmolarity had little effect on the uptake characteristics, since the rate of influx increased from 12 to only 20 nmol min-1 mg of protein-1 when NaCl concentrations were raised from 0 to 0.3 or 0.5 M, with a constant of transport of 80 microM. Natural-abundance 13C-nuclear magnetic resonance and radiolabelling assays showed that ectoine, unlike glycine betaine, is not intracellularly accumulated and, as a consequence, does not repress the synthesis of endogenous compatible solutes (glutamate, N-acetylglutaminylglutamine amide, and trehalose). Furthermore, the strong rise in glutamate content in cells osmotically stressed in the presence of ectoine suggests that, instead of being involved in osmotic balance restoration, ectoine should play a key role in triggering the synthesis of endogenous osmolytes. Hence, we believe that there are at least two distinct classes of osmoprotectants: those such as glycine betaine or glutamate, which act as genuine osmolytes, and those such as ectoine, which act as chemical mediators.
在证明了四氢嘧啶(ectoine)对大肠杆菌具有渗透保护特性之后(M. Jebbar、R. Talibart、K. Gloux、T. Bernard和Blanco,《细菌学杂志》174:5027 - 5035,1992年),我们研究了该分子在苜蓿根瘤菌渗透适应过程中的作用。在不利的渗透条件(0.5 M NaCl)下,四氢嘧啶在促进苜蓿根瘤菌生长方面几乎与甘氨酸甜菜碱一样有效。此外,还观察到对甘氨酸甜菜碱不敏感的根瘤菌菌株的生长也得到了改善。四氢嘧啶的转运被证明是可诱导的、依赖周质蛋白的,并且如竞争实验所示,与甘氨酸甜菜碱的转运不同。培养基渗透压对摄取特性影响很小,因为当NaCl浓度从0提高到0.3或0.5 M时,流入速率仅从12增加到20 nmol min⁻¹ mg蛋白⁻¹,转运常数为80 μM。天然丰度¹³C核磁共振和放射性标记分析表明,与甘氨酸甜菜碱不同,四氢嘧啶不会在细胞内积累,因此不会抑制内源性相容性溶质(谷氨酸、N - 乙酰谷氨酰胺基谷氨酰胺酰胺和海藻糖)的合成。此外,在有四氢嘧啶存在的情况下,渗透胁迫细胞中谷氨酸含量的大幅上升表明,四氢嘧啶不应参与恢复渗透平衡,而应在触发内源性渗透剂的合成中起关键作用。因此,我们认为至少有两类不同的渗透保护剂:一类如甘氨酸甜菜碱或谷氨酸,作为真正的渗透剂起作用;另一类如四氢嘧啶,作为化学介质起作用。