Suppr超能文献

Spectral sensitivity and mechanism of interaction between inhibitory and excitatory responses of photosensory pineal neurons.

作者信息

Uchida K, Morita Y

机构信息

1st Department of Physiology, Hamamatsu University School of Medicine, Japan.

出版信息

Pflugers Arch. 1994 Jun;427(3-4):373-7. doi: 10.1007/BF00374547.

Abstract

The characteristics and distribution of chromatic-type neurons in the photosensory pineal organ of the river lamprey, Lampetra japonica, were investigated electrophysiologically. Neuronal activity was inhibited by light of short wavelengths and excited by middle to long wavelengths. The maximum sensitivities of the inhibitory and excitatory responses were at about 380 nm and 540 nm respectively. The spike activity of the neurons during steady illumination for a 10-min period was measured. Although a flash of short-wavelength light caused a strong inhibition in the neuron, this effect was not sustained during 10 min of photic stimuli. It was found that the inhibitory effect continued when excitatory (middle-wavelength) light was delivered together with inhibitory (short-wavelength) light. The result supports the hypothesis of photoregeneration in the pineal photoreceptor, which occurs when photoreceptors having high sensitivity to short wavelengths receive middle-wavelength light. Contrary to the inhibitory response, the excitatory one caused by middle wavelengths continued during stimulation. Spike frequency of the neuron was determined by the spectral composition of the light. Since environmental light contains both inhibitory and excitatory components, the neuron would keep both sensitivities during the daytime and could measure the variation in the spectral composition. Judging from the recording sites, the chromatic-type neurons are distributed in the peripheral part of the pineal organ.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验