Suppr超能文献

Catalysis and energy coupling of H(+)-ATPase (ATP synthase): molecular biological approaches.

作者信息

Futai M, Park M, Iwamoto A, Omote H, Maeda M

机构信息

Department of Organic Chemistry and Biochemistry, Osaka University, Japan.

出版信息

Biochim Biophys Acta. 1994 Aug 30;1187(2):165-70. doi: 10.1016/0005-2728(94)90104-x.

Abstract

The molecular biological approach has provided important information for understanding the F0F1 H(+)-ATPase. This article focuses on our recent results on the catalytic site in the beta subunit, and the roles of alpha/beta subunit interaction and amino/carboxyl terminal interaction of the gamma subunit in energy coupling. Extensive mutagenesis of the beta subunit revealed that beta Lys-155, beta Thr-156, beta Glu-181 and beta Arg-182 are essential catalytic residues. beta Glu-185 is not absolutely essential, but a carboxyl residue may be necessary at this position. A pseudo-revertant analysis positioned beta Gly-172, beta Ser-174, beta Glu-192 and beta Val-198 in the proximity of beta Gly-149. The finding of the roles of beta Gly-149, beta Lys-155, and beta Thr-156 emphasized the importance of the glycine-rich sequence (Gly-X-X-X-X-Gly-Lys-Thr/Ser, E. coli beta residues between beta Gly-149 and beta Thr-156) conserved in many nucleotide binding proteins. The A subunits of vacuolar type ATPases may have a similar catalytic mechanism because they have conserved glycine-rich and Gly-Glu-Arg (corresponding to beta Gly-180-beta Arg-182) sequences. The results of these mutational studies are consistent with the labeling of beta Lys-155 and beta Lys-201 with AP3-PL, and of beta Glu-192 with DCCD [15]. The DCCD-binding residue of a thermophilic Bacillus corresponds to beta Glu-181, an essential catalytic residue discussed above. The defective coupling of the beta Ser-174-->Phe mutant was suppressed by the second mutation alpha Arg-296-->Cys, indicating the importance of alpha/beta interaction in energy coupling. The gamma subunit, especially its amino/carboxyl interaction, seems to be essential for energy coupling between catalysis and transport judging from studies on gamma Met-23-->Lys or Arg mutation and second-site mutations which suppressed the gamma Lys-23 mutation. Thus the conserved gamma Met-23 is not absolutely essential but is located in the important region for amino/carboxyl interaction for energy coupling.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验