Suppr超能文献

[乳腺癌预后标准评估中遇到的困难:基于勒内·于格南中心的经验]

[Difficulties encountered in the evaluation of prognostic criteria of breast cancer: apropos of the experience of the René Huguenin center].

作者信息

Spyratos F, Le Doussal V, Tubiana-Hulin M, Hacene K, Rouessé J

机构信息

Département de Biologie, Centre René Huguenin, Saint-Cloud.

出版信息

Bull Acad Natl Med. 1994 Mar;178(3):495-506; discussion 506-7.

PMID:8076189
Abstract

The use of prognostic factors to help select breast cancer patients for adjuvant therapy is of considerable concern to the oncology community. This need for selection of prognostically less favorable cases is stimulating investigators to identify new and more powerful prognostic factors. Unfortunately however, this identification process is becoming more confusing because of a lack of guidelines for investigators to use to study new factors and for reviewers and readers to use to evaluate papers on this topic. In this paper, we will describe across our experience the main problems encountered in the study of biological prognostic studies. Considering evaluation criteria to be developed in the future, it appears that only multicentric and multidisciplinary structures are able to define decisional trees based on technically and clinically validated parameters in particular patients subgroups. Such a structure exists at the european level ("Receptor Study Group" of the EORTC) and a similar structure has now been created in France to answer these questions.

摘要

利用预后因素来帮助选择乳腺癌患者进行辅助治疗,这是肿瘤学界相当关注的问题。选择预后较差病例的这种需求促使研究人员去识别新的、更强大的预后因素。然而,不幸的是,由于缺乏供研究人员用于研究新因素以及供审稿人和读者用于评估该主题论文的指导原则,这个识别过程正变得越来越令人困惑。在本文中,我们将根据我们的经验描述生物学预后研究中遇到的主要问题。考虑到未来要制定的评估标准,似乎只有多中心和多学科结构能够基于特定患者亚组中经过技术和临床验证的参数来定义决策树。在欧洲层面存在这样一个结构(欧洲癌症研究与治疗组织的“受体研究组”),法国现在也创建了一个类似的结构来回答这些问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验