Dolan S A, Proctor J L, Alling D W, Okubo Y, Wellems T E, Miller L H
Laboratory of Malaria Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.
Mol Biochem Parasitol. 1994 Mar;64(1):55-63. doi: 10.1016/0166-6851(94)90134-1.
Invasion of erythrocytes by malaria parasites involves multiple receptor-ligand interactions. To elucidate these pathways, we made use of four parasite clones with differing specificities for invasion, erythrocytes that are mutant for either glycophorin A or B, and enzyme modification of the erythrocyte surface with neuraminidase and trypsin. Neuraminidase alone abolishes invasion of two parasite clones (Dd2, FCR3/A2); these invade after trypsin treatment alone. A third clone (7G8) is unable to invade trypsin-treated erythrocytes. The fourth clone (HB3) can invade after either neuraminidase or trypsin treatment. The receptor for invasion of trypsin-treated erythrocytes was explored in two ways: treatment of trypsin-treated normal cells with neuraminidase, and trypsin treatment of glycophorin B-deficient cells. Both treatments eliminated invasion by all clones, indicating that the trypsin-independent pathway uses sialic acid and glycophorin B. To identify parasite proteins involved in the different pathways, erythrocyte binding assays were performed with soluble parasite proteins from each clone. Based on binding assays using erythrocytes that lack glycophorin A, the parasite protein known as EBA-175 appears to bind predominantly to glycophorin A. In contrast, the glycophorin B pathway does not appear to involve EBA-175, as binding of EBA-175 was similarly reduced to trypsin-treated normal and trypsin-treated glycophorin B-deficient erythrocytes. Thus, the glycophorin B-dependent, sialic acid-dependent invasion of trypsin-treated normal erythrocytes uses a different parasite ligand, indicating two or more sialic-dependent pathways for invasion. Clone 7G8, which cannot invade trypsin-treated erythrocytes, may be missing the ligand for invasion via glycophorin B.(ABSTRACT TRUNCATED AT 250 WORDS)
疟原虫侵入红细胞涉及多种受体 - 配体相互作用。为阐明这些途径,我们利用了四个对侵入具有不同特异性的寄生虫克隆、缺乏血型糖蛋白A或B的突变红细胞,以及用神经氨酸酶和胰蛋白酶对红细胞表面进行酶修饰。单独使用神经氨酸酶可消除两个寄生虫克隆(Dd2、FCR3/A2)的侵入;它们仅在胰蛋白酶处理后才能侵入。第三个克隆(7G8)无法侵入经胰蛋白酶处理的红细胞。第四个克隆(HB3)在神经氨酸酶或胰蛋白酶处理后均可侵入。通过两种方式探索了经胰蛋白酶处理的红细胞的侵入受体:用神经氨酸酶处理经胰蛋白酶处理的正常细胞,以及对缺乏血型糖蛋白B的细胞进行胰蛋白酶处理。两种处理均消除了所有克隆的侵入,表明不依赖胰蛋白酶的途径使用唾液酸和血型糖蛋白B。为鉴定参与不同途径的寄生虫蛋白,用来自每个克隆的可溶性寄生虫蛋白进行了红细胞结合试验。基于使用缺乏血型糖蛋白A的红细胞的结合试验,被称为EBA - 175的寄生虫蛋白似乎主要与血型糖蛋白A结合。相比之下,血型糖蛋白B途径似乎不涉及EBA - 175,因为EBA - 175与经胰蛋白酶处理的正常红细胞和经胰蛋白酶处理的缺乏血型糖蛋白B的红细胞的结合同样减少。因此,经胰蛋白酶处理的正常红细胞的依赖血型糖蛋白B、依赖唾液酸的侵入使用了不同的寄生虫配体,表明存在两条或更多条依赖唾液酸的侵入途径。无法侵入经胰蛋白酶处理的红细胞的克隆7G8可能缺少通过血型糖蛋白B进行侵入的配体。(摘要截短于250字)