Suppr超能文献

飞行蟑螂对风诱发的逃避反应。

Wind-evoked evasive responses in flying cockroaches.

作者信息

Ganihar D, Libersat F, Wendler G, Cambi J M

机构信息

Department of Cell and Animal Biology, Hebrew University, Jerusalem, Israel.

出版信息

J Comp Physiol A. 1994 Jul;175(1):49-65. doi: 10.1007/BF00217436.

Abstract
  1. A standing cockroach (Periplaneta americana) responds to the air displacement made by an approaching predator, by turning away and running. The wind receptors on the cerci, two posterior sensory appendages, excite a group of ventral giant interneurons that mediate this response. While flying, these interneurons remain silent, owing to strong inhibition; however, the dorsal giant interneurons respond strongly to wind. Using behavioral and electromyographic analysis, we sought to determine whether flying cockroaches also turn away from air displacement like that produced by an approaching flying predator; and if so, whether the cerci and dorsal giant interneurons mediate this response. 2) When presented with a wind puff from the side, a flying cockroach carries out a variety of maneuvers that would cause a rapid turn away and perhaps a dive. These are not evoked if the cerci are ablated (Figs. 4, 5,6). 3) This evasive response appears to be mediated by a circuit separate from that mediating escape when the cockroach is standing (Fig. 7). 4) The dorsal giant interneurons respond during flight in a directional manner that is suited to mediate this behavior (Fig. 8). 5) Recordings of the wind produced by a moving model predator (Fig. 9), together with measurements of the behavioral latency of tethered cockroaches, suggest that the evasive response would begin just milliseconds before a predator actually arrives. However, as explained in the Discussion section, under natural conditions, the evasive response may well begin earlier, and could indeed be useful in escaping from predators. 6) If cockroaches had a wind-mediated yaw-correcting behavior, as locusts have, this could conflict with the wind-evoked escape. In fact, cockroaches show the opposite, yaw-enhancing response, mediated by the cerci, that does not present a conflict with escape (Figs. 10-14).
摘要
  1. 一只站立的蟑螂(美洲大蠊)会对接近的捕食者引起的空气位移做出反应,转身并逃跑。尾须(蟑螂后部的两个感觉附肢)上的风感受器会激发一组腹侧巨型中间神经元,这些神经元介导这种反应。在飞行时,由于强烈的抑制作用,这些中间神经元保持沉默;然而,背侧巨型中间神经元对风有强烈反应。我们通过行为和肌电图分析,试图确定飞行中的蟑螂是否也会像面对接近的飞行捕食者产生的空气位移那样转身躲避;如果是这样,尾须和背侧巨型中间神经元是否介导这种反应。2) 当从侧面吹来一阵风时,飞行中的蟑螂会做出各种动作,这些动作会导致其迅速转身躲避,甚至可能俯冲。如果切除尾须,这些动作就不会被诱发(图4、5、6)。3) 这种逃避反应似乎是由一个与蟑螂站立时介导逃避的回路不同的回路介导的(图7)。4) 背侧巨型中间神经元在飞行过程中以适合介导这种行为的定向方式做出反应(图8)。5) 对移动的模型捕食者产生的风的记录(图9),以及对系留蟑螂行为潜伏期的测量表明,逃避反应会在捕食者实际到达前几毫秒开始。然而,如讨论部分所解释的,在自然条件下,逃避反应很可能更早开始,并且确实可能有助于逃避捕食者。6) 如果蟑螂像蝗虫一样具有风介导的偏航校正行为,这可能与风诱发的逃避反应相冲突。事实上,蟑螂表现出相反的、由尾须介导的偏航增强反应,这种反应与逃避反应并不冲突(图10 - 14)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验