Suppr超能文献

Quantitative analysis of macromolecular conformational changes using agarose gel electrophoresis: application to chromatin folding.

作者信息

Fletcher T M, Serwer P, Hansen J C

机构信息

Department of Biochemistry, University of Texas Health Science Center at San Antonio 78284-7760.

出版信息

Biochemistry. 1994 Sep 13;33(36):10859-63. doi: 10.1021/bi00202a002.

Abstract

Quantitative analysis of chromatin electrophoretic mobility (mu) in agarose gels provides a measure of three structural parameters: average surface electrical charge density, which is proportional to the gel-free mu (mu 0), effective radius (Re), and particle deformability [Fletcher, T. M., Krishnan, U., Serwer, P., & Hansen, J. C. (1994) Biochemistry 33, 2226-2233]. To determine whether the intramolecular conformational changes associated with salt-dependent chromatin folding influence these electrophoretic parameters, defined oligonucleosomes were reconstituted from monodisperse tandemly repeated 5S DNA and varying amounts of histone octamers. These oligonucleosomes were subjected to both quantitative agarose gel electrophoresis and analytical velocity ultracentrifugation in buffers containing 0-2 mM MgCl2. Ionic conditions that caused a 40% increase in the oligonucleosome sedimentation coefficient (s20,w) also caused both a 30% decrease in Re and a 60% decrease in the magnitude of the mu 0. Furthermore, the Mg(2+)-dependent changes in s20,w, Re, and mu 0 each exhibited the same nonlinear dependence on the degree of nucleosome saturation of the DNA. These data demonstrate that quantitative agarose gel electrophoresis can be used to detect and characterize the process of chromatin folding. In addition, they suggest that this approach can be used for characterization of the conformational dynamics of many other types of macromolecular assemblies, including those systems that are not yet amenable for study by more traditional quantitative biophysical techniques.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验