Suppr超能文献

单试验运动相关脑宏观电位分析

Analysis of single trial movement-related brain macropotential.

作者信息

Chiarenza G A, Cerutti S, Liberati D

机构信息

Istituto di Neuropsichiatria Infantile, Università di Milano, Ospedale di Rho, Italy.

出版信息

Int J Psychophysiol. 1994 May;16(2-3):163-74. doi: 10.1016/0167-8760(89)90043-3.

Abstract

A parametric method of identification of movement-related brain macropotentials on a single trial basis through an ARX (autoregressive with exogenous inputs) algorithm is presented. The basic estimation of the information contained in the single trial is taken from an average carried out on a sufficient number of trials, while the noise sources, EEG and EOG are characterized as exogenous inputs in the model. The simulations as well as the experimental results confirm the capability of the model to drastically improve the signal/noise ratio in each single trial and to satisfactorily identify the contributions of signal and noise in the overall recording. This way, using the same algorithm, a particularly efficient reduction of ocular artifacts is also achieved. The movement-related brain macropotentials recorded in three subjects show a high degree of variability from trial and this effect seems to be related to programming processes and evaluation of errors.

摘要

本文提出了一种基于ARX(自回归外生输入)算法在单次试验基础上识别与运动相关的脑宏观电位的参数方法。单次试验中所含信息的基本估计取自对足够数量试验进行的平均,而噪声源脑电图(EEG)和眼电图(EOG)在模型中被表征为外生输入。模拟以及实验结果证实了该模型能够显著提高每次单次试验中的信噪比,并令人满意地识别出整体记录中信号和噪声的贡献。通过这种方式,使用相同的算法,还实现了对眼动伪迹的特别有效减少。在三名受试者中记录的与运动相关的脑宏观电位在各次试验中显示出高度的可变性,这种效应似乎与编程过程和误差评估有关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验