Anchin J M, Droupadi P R, DuBois G E, Kellogg M S, Nagarajan S, Carter J S, Linthicum D S
Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station 77843.
J Immunol. 1994 Oct 1;153(7):3059-69.
The interactive residues for mouse mAb NC10.8, which binds a superpotent guanidinium sweetener N-(p-cyanophenyl)-N'-(diphenylmethyl)guanidinoacetic acid with high affinity (Kd = 5 nM), were examined by using radioligand competitive binding, photoaffinity labeling, absorption and fluorescence spectroscopy, computer-aided molecular modeling, and site-directed mutagenesis. Competitive ligand analogue binding data revealed important structural features and a pH sensitivity for ligand binding. Spectroscopy of the sweetener-mAb complex revealed ligand-induced fluorescence quenching and the presence of a charge-transfer band. Site-directed mutagenesis of L:96W abolished the ligand-induced fluorescence quenching and reduced Ab affinity. The apparent Kd increased from 5 nM to more than 200 nM after such modification. A theoretical model of the Fv region was generated with use of a knowledge-based algorithm, and this model was used to identify the locations of key residues in the complementarity determining regions. These experimental and theoretical studies support the prediction that the sweetener ligand coordinates with the following residues: L:34H contacts the cyanophenyl ring, L:27DR forms a salt bridge with the acetic acid moiety, L:96W forms a pi-pi interaction with the cyanophenyl ring, and H:95E contacts the positively charged aryl nitrogen. These studies are important to our understanding of Ab-ligand specificity and may also shed light on the important chemical motifs responsible for elevated levels of sweetness potency in organic compounds.
通过放射性配体竞争性结合、光亲和标记、吸收光谱和荧光光谱、计算机辅助分子建模以及定点诱变等方法,研究了与超强胍盐甜味剂N-(对氰基苯基)-N'-(二苯基甲基)胍基乙酸高亲和力结合(Kd = 5 nM)的小鼠单克隆抗体NC10.8的相互作用残基。竞争性配体类似物结合数据揭示了配体结合的重要结构特征和pH敏感性。甜味剂 - 单克隆抗体复合物的光谱显示配体诱导的荧光猝灭和电荷转移带的存在。L:96W的定点诱变消除了配体诱导的荧光猝灭并降低了抗体亲和力。这种修饰后,表观Kd从5 nM增加到超过200 nM。利用基于知识的算法生成了Fv区域的理论模型,并使用该模型确定互补决定区中关键残基的位置。这些实验和理论研究支持以下预测:甜味剂配体与以下残基配位:L:34H接触氰基苯环,L:27DR与乙酸部分形成盐桥,L:96W与氰基苯环形成π-π相互作用,H:95E接触带正电荷的芳基氮。这些研究对于我们理解抗体 - 配体特异性很重要,也可能有助于揭示有机化合物中导致高甜度的重要化学基序。