Creamer T P, Rose G D
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110.
Proteins. 1994 Jun;19(2):85-97. doi: 10.1002/prot.340190202.
Much effort has been invested in seeking to understand the thermodynamic basis of helix stability in both peptides and proteins. Recently, several groups have measured the helix-forming propensities of individual residues (Lyu, P.C., Liff, M.I., Marky, L.A., Kallenbach, N.R. Science 250:669-673, 1990; O'Neil, K.T., DeGrado, W.F. Science 250:646-651, 1990; Padmanabhan, S., Marqusee, S., Ridgeway, T., Laue, T.M., Baldwin, R.L. Nature (London) 344:268-270, 1990). Using Monte Carlo computer simulations, we tested the hypothesis that these differences in measured helix-forming propensity are due primarily to loss of side chain conformational entropy upon helix formation (Creamer, T.P., Rose, G.D. Proc. Natl. Acad. Sci. U.S.A. 89:5937-5941, 1992). Our previous study employed a rigid helix backbone, which is here generalized to a completely flexible helix model in order to ensure that earlier results were not a methodological artifact. Using this flexible model, side chain rotamer distributions and entropy losses are calculated and shown to agree with those obtained earlier. We note that the side chain conformational entropy calculated for Trp in our previous study was in error; a corrected value is presented. Extending earlier work, calculated entropy losses are found to correlate strongly with recent helix propensity scales derived from substitutions made within protein helices (Horovitz, A., Matthews, J.M., Fersht, A.R. J. Mol. Biol. 227:560-568, 1992; Blaber, M., Zhang, X.-J., Matthews, B.M. Science 260:1637-1640, 1993). In contrast, little correlation is found between these helix propensity scales and the accessible surface area buried upon formation of a model polyalanyl alpha-helix. Taken in sum, our results indicate that loss of side chain entropy is a major determinant of the helix-forming tendency of residues in both peptide and protein helices.
人们投入了大量精力来试图理解肽和蛋白质中螺旋稳定性的热力学基础。最近,有几个研究小组测量了单个残基的螺旋形成倾向(吕,P.C.,利夫,M.I.,马尔基,L.A.,卡伦巴赫,N.R.《科学》250:669 - 673,1990;奥尼尔,K.T.,德格拉多,W.F.《科学》250:646 - 651,1990;帕德马纳班,S.,马克西,S.,里奇韦,T.,劳厄,T.M.,鲍德温,R.L.《自然》(伦敦)344:268 - 270,1990)。我们使用蒙特卡罗计算机模拟来检验这样一个假设,即所测量的螺旋形成倾向的这些差异主要是由于螺旋形成时侧链构象熵的损失(克里默,T.P.,罗斯,G.D.《美国国家科学院院刊》89:5937 - 5941,1992)。我们之前的研究采用了刚性的螺旋主链,在此将其推广为完全柔性的螺旋模型,以确保早期结果不是方法上的人为因素导致的。使用这个柔性模型,计算了侧链旋转异构体分布和熵损失,结果表明与早期获得的结果一致。我们注意到我们之前研究中计算的色氨酸的侧链构象熵有误;给出了修正值。扩展早期的工作,发现计算出的熵损失与最近从蛋白质螺旋内替换得到的螺旋倾向标度密切相关(霍罗维茨,A.,马修斯,J.M.,费尔什特,A.R.《分子生物学杂志》227:560 - 568,1992;布拉伯,M.,张,X.-J.,马修斯,B.M.《科学》260:1637 - 1640,1993)。相比之下,这些螺旋倾向标度与模型聚丙氨酰α - 螺旋形成时埋藏的可及表面积之间几乎没有相关性。总体而言,我们的结果表明侧链熵的损失是肽和蛋白质螺旋中残基螺旋形成倾向的主要决定因素。