Suppr超能文献

人工氧活化金属酶的设计与工程

Design and engineering of artificial oxygen-activating metalloenzymes.

作者信息

Nastri Flavia, Chino Marco, Maglio Ornella, Bhagi-Damodaran Ambika, Lu Yi, Lombardi Angela

机构信息

Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 80126 Naples, Italy.

出版信息

Chem Soc Rev. 2016 Sep 21;45(18):5020-54. doi: 10.1039/c5cs00923e. Epub 2016 Jun 24.

Abstract

Many efforts are being made in the design and engineering of metalloenzymes with catalytic properties fulfilling the needs of practical applications. Progress in this field has recently been accelerated by advances in computational, molecular and structural biology. This review article focuses on the recent examples of oxygen-activating metalloenzymes, developed through the strategies of de novo design, miniaturization processes and protein redesign. Considerable progress in these diverse design approaches has produced many metal-containing biocatalysts able to adopt the functions of native enzymes or even novel functions beyond those found in Nature.

摘要

人们正在做出许多努力,设计和构建具有满足实际应用需求催化特性的金属酶。计算生物学、分子生物学和结构生物学的进展最近加速了该领域的发展。这篇综述文章重点介绍了通过从头设计、小型化过程和蛋白质重新设计策略开发的氧活化金属酶的最新实例。这些不同设计方法取得的显著进展已产生了许多含金属生物催化剂,它们能够具备天然酶的功能,甚至具有自然界中未发现的新功能。

相似文献

1
Design and engineering of artificial oxygen-activating metalloenzymes.
Chem Soc Rev. 2016 Sep 21;45(18):5020-54. doi: 10.1039/c5cs00923e. Epub 2016 Jun 24.
2
Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
Molecules. 2019 Jul 29;24(15):2743. doi: 10.3390/molecules24152743.
3
Engineering Metalloprotein Functions in Designed and Native Scaffolds.
Trends Biochem Sci. 2019 Dec;44(12):1022-1040. doi: 10.1016/j.tibs.2019.06.006. Epub 2019 Jul 13.
4
Computational approaches for design and redesign of metal-binding sites on proteins.
Biosci Rep. 2017 Mar 27;37(2). doi: 10.1042/BSR20160179. Print 2017 Apr 28.
5
Directed evolution of artificial metalloenzymes for in vivo metathesis.
Nature. 2016 Sep 29;537(7622):661-665. doi: 10.1038/nature19114. Epub 2016 Aug 29.
6
Recent achievments in the design and engineering of artificial metalloenzymes.
Curr Opin Chem Biol. 2014 Apr;19:99-106. doi: 10.1016/j.cbpa.2014.01.018. Epub 2014 Mar 5.
7
Design of functional metalloproteins.
Nature. 2009 Aug 13;460(7257):855-62. doi: 10.1038/nature08304.
8
Application of artificial backbone connectivity in the development of metalloenzyme mimics.
Curr Opin Chem Biol. 2024 Aug;81:102509. doi: 10.1016/j.cbpa.2024.102509. Epub 2024 Aug 3.
9
Design of Artificial Enzymes: Insights into Protein Scaffolds.
Chembiochem. 2023 Mar 14;24(6):e202200566. doi: 10.1002/cbic.202200566. Epub 2023 Jan 3.
10
Recent advances in the design and optimization of artificial metalloenzymes.
Curr Opin Chem Biol. 2024 Aug;81:102508. doi: 10.1016/j.cbpa.2024.102508. Epub 2024 Aug 3.

引用本文的文献

2
Exploring the influence of H-bonding and ligand constraints on thiolate ligated non-heme iron mediated dioxygen activation.
Chem Sci. 2024 Jul 9;15(32):12710-12720. doi: 10.1039/d4sc02787f. eCollection 2024 Aug 14.
3
Biohybrid materials comprising an artificial peroxidase and differently shaped gold nanoparticles.
Nanoscale Adv. 2024 Jun 3;6(14):3533-3542. doi: 10.1039/d4na00344f. eCollection 2024 Jul 9.
4
Artificial Manganese Metalloenzymes with Laccase-like Activity: Design, Synthesis, and Characterization.
ACS Appl Bio Mater. 2024 Jul 15;7(7):4760-4771. doi: 10.1021/acsabm.4c00571. Epub 2024 Jun 25.
5
Fresh Impetus in the Chemistry of Calcium Peroxides.
J Am Chem Soc. 2024 Jul 17;146(28):18938-18947. doi: 10.1021/jacs.4c00906. Epub 2024 Jun 7.
6
Heme-copper and Heme O-derived synthetic (bioinorganic) chemistry toward an understanding of cytochrome c oxidase dioxygen chemistry.
J Inorg Biochem. 2023 Dec;249:112367. doi: 10.1016/j.jinorgbio.2023.112367. Epub 2023 Sep 9.
7
Selective Oxidation of Halophenols Catalyzed by an Artificial Miniaturized Peroxidase.
Int J Mol Sci. 2023 Apr 29;24(9):8058. doi: 10.3390/ijms24098058.
8
Roles of Metal Ions in Foldamers and Other Conformationally Flexible Supramolecular Systems.
ACS Org Inorg Au. 2022 Aug 22;2(6):464-476. doi: 10.1021/acsorginorgau.2c00021. eCollection 2022 Dec 7.
9
Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes.
Subcell Biochem. 2022;99:109-153. doi: 10.1007/978-3-031-00793-4_4.
10
Isolating Fe-O Intermediates in Dioxygen Activation by Iron Porphyrin Complexes.
Molecules. 2022 Jul 22;27(15):4690. doi: 10.3390/molecules27154690.

本文引用的文献

1
Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding.
Chem Sci. 2015 Jul 1;6(7):4060-4065. doi: 10.1039/c5sc01065a. Epub 2015 May 7.
2
Novel artificial metalloenzymes by incorporation of metal-binding unnatural amino acids.
Chem Sci. 2015 Jan 1;6(1):770-776. doi: 10.1039/c4sc01525h. Epub 2014 Oct 9.
3
Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure.
Eur J Inorg Chem. 2015 Jul;2015(21):3371-3390. doi: 10.1002/ejic.201500470. Epub 2015 Jul 6.
4
Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
Nat Protoc. 2016 May;11(5):835-52. doi: 10.1038/nprot.2016.019. Epub 2016 Mar 31.
6
Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts.
J Am Chem Soc. 2015 Nov 11;137(44):13992-4006. doi: 10.1021/jacs.5b09348. Epub 2015 Nov 3.
8
Metalloproteins: Simple structure, complex function.
Nat Chem Biol. 2015 Oct;11(10):760-1. doi: 10.1038/nchembio.1918.
9
A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme.
J Am Chem Soc. 2015 Sep 16;137(36):11570-3. doi: 10.1021/jacs.5b07119. Epub 2015 Sep 8.
10
Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.
Acc Chem Res. 2015 Sep 15;48(9):2632-9. doi: 10.1021/acs.accounts.5b00312. Epub 2015 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验